aboutsummaryrefslogtreecommitdiffstats
path: root/modules/textual_inversion
diff options
context:
space:
mode:
authorAUTOMATIC <16777216c@gmail.com>2023-01-06 05:52:06 +0000
committerAUTOMATIC <16777216c@gmail.com>2023-01-06 05:52:06 +0000
commit683287d87f6401083a8d63eedc00ca7410214ca1 (patch)
tree2f76affb4b41044982a6108ba30dddc27f2891ac /modules/textual_inversion
parent88e01b237e60730338823ac4f11972a98d698ce7 (diff)
downloadstable-diffusion-webui-gfx803-683287d87f6401083a8d63eedc00ca7410214ca1.tar.gz
stable-diffusion-webui-gfx803-683287d87f6401083a8d63eedc00ca7410214ca1.tar.bz2
stable-diffusion-webui-gfx803-683287d87f6401083a8d63eedc00ca7410214ca1.zip
rework saving training params to file #6372
Diffstat (limited to 'modules/textual_inversion')
-rw-r--r--modules/textual_inversion/logging.py24
-rw-r--r--modules/textual_inversion/textual_inversion.py23
2 files changed, 27 insertions, 20 deletions
diff --git a/modules/textual_inversion/logging.py b/modules/textual_inversion/logging.py
new file mode 100644
index 00000000..8b1981d5
--- /dev/null
+++ b/modules/textual_inversion/logging.py
@@ -0,0 +1,24 @@
+import datetime
+import json
+import os
+
+saved_params_shared = {"model_name", "model_hash", "initial_step", "num_of_dataset_images", "learn_rate", "batch_size", "data_root", "log_directory", "training_width", "training_height", "steps", "create_image_every", "template_file"}
+saved_params_ti = {"embedding_name", "num_vectors_per_token", "save_embedding_every", "save_image_with_stored_embedding"}
+saved_params_hypernet = {"hypernetwork_name", "layer_structure", "activation_func", "weight_init", "add_layer_norm", "use_dropout", "save_hypernetwork_every"}
+saved_params_all = saved_params_shared | saved_params_ti | saved_params_hypernet
+saved_params_previews = {"preview_prompt", "preview_negative_prompt", "preview_steps", "preview_sampler_index", "preview_cfg_scale", "preview_seed", "preview_width", "preview_height"}
+
+
+def save_settings_to_file(log_directory, all_params):
+ now = datetime.datetime.now()
+ params = {"datetime": now.strftime("%Y-%m-%d %H:%M:%S")}
+
+ keys = saved_params_all
+ if all_params.get('preview_from_txt2img'):
+ keys = keys | saved_params_previews
+
+ params.update({k: v for k, v in all_params.items() if k in keys})
+
+ filename = f'settings-{now.strftime("%Y-%m-%d-%H-%M-%S")}.json'
+ with open(os.path.join(log_directory, filename), "w") as file:
+ json.dump(params, file, indent=4)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index e9cf432f..f9f5e8cd 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -18,6 +18,8 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler
from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64,
insert_image_data_embed, extract_image_data_embed,
caption_image_overlay)
+from modules.textual_inversion.logging import save_settings_to_file
+
class Embedding:
def __init__(self, vec, name, step=None):
@@ -231,25 +233,6 @@ def write_loss(log_directory, filename, step, epoch_len, values):
**values,
})
-# Note: hypernetwork.py has a nearly identical function of the same name.
-def save_settings_to_file(model_name, model_hash, initial_step, num_of_dataset_images, embedding_name, vectors_per_token, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
- # Starting index of preview-related arguments.
- border_index = 18
- # Get a list of the argument names.
- arg_names = inspect.getfullargspec(save_settings_to_file).args
- # Create a list of the argument names to include in the settings string.
- names = arg_names[:border_index] # Include all arguments up until the preview-related ones.
- if preview_from_txt2img:
- names.extend(arg_names[border_index:]) # Include preview-related arguments if applicable.
- # Build the settings string.
- settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n"
- for name in names:
- if name != 'log_directory': # It's useless and redundant to save log_directory.
- value = locals()[name]
- settings_str += f"{name}: {value}\n"
- # Create or append to the file.
- with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout:
- fout.write(settings_str + "\n\n")
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
assert model_name, f"{name} not selected"
@@ -330,7 +313,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
if shared.opts.save_training_settings_to_txt:
- save_settings_to_file(checkpoint.model_name, '[{}]'.format(checkpoint.hash), initial_step, len(ds), embedding_name, len(embedding.vec), learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height)
+ save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
latent_sampling_method = ds.latent_sampling_method