diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2024-01-01 13:39:51 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-01-01 13:39:51 +0000 |
commit | dfd64382211317cc46ad337c373492bfc420fa18 (patch) | |
tree | 3b1b2f5f3648da07430f54d1c155ce379a6fa3f7 /modules/upscaler_utils.py | |
parent | 3d15e58b0a30f2ef1e731f9e429f4d3cf1c259c5 (diff) | |
parent | 0ce67cb61806cf43f4d726d4705a4f6fdc2540e6 (diff) | |
download | stable-diffusion-webui-gfx803-dfd64382211317cc46ad337c373492bfc420fa18.tar.gz stable-diffusion-webui-gfx803-dfd64382211317cc46ad337c373492bfc420fa18.tar.bz2 stable-diffusion-webui-gfx803-dfd64382211317cc46ad337c373492bfc420fa18.zip |
Merge branch 'dev' into feat/interrupted-end
Diffstat (limited to 'modules/upscaler_utils.py')
-rw-r--r-- | modules/upscaler_utils.py | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/modules/upscaler_utils.py b/modules/upscaler_utils.py new file mode 100644 index 00000000..f5cb92d5 --- /dev/null +++ b/modules/upscaler_utils.py @@ -0,0 +1,140 @@ +import logging +from typing import Callable + +import numpy as np +import torch +import tqdm +from PIL import Image + +from modules import images, shared, torch_utils + +logger = logging.getLogger(__name__) + + +def upscale_without_tiling(model, img: Image.Image): + img = np.array(img) + img = img[:, :, ::-1] + img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255 + img = torch.from_numpy(img).float() + + param = torch_utils.get_param(model) + img = img.unsqueeze(0).to(device=param.device, dtype=param.dtype) + + with torch.no_grad(): + output = model(img) + + output = output.squeeze().float().cpu().clamp_(0, 1).numpy() + output = 255. * np.moveaxis(output, 0, 2) + output = output.astype(np.uint8) + output = output[:, :, ::-1] + return Image.fromarray(output, 'RGB') + + +def upscale_with_model( + model: Callable[[torch.Tensor], torch.Tensor], + img: Image.Image, + *, + tile_size: int, + tile_overlap: int = 0, + desc="tiled upscale", +) -> Image.Image: + if tile_size <= 0: + logger.debug("Upscaling %s without tiling", img) + output = upscale_without_tiling(model, img) + logger.debug("=> %s", output) + return output + + grid = images.split_grid(img, tile_size, tile_size, tile_overlap) + newtiles = [] + + with tqdm.tqdm(total=grid.tile_count, desc=desc) as p: + for y, h, row in grid.tiles: + newrow = [] + for x, w, tile in row: + logger.debug("Tile (%d, %d) %s...", x, y, tile) + output = upscale_without_tiling(model, tile) + scale_factor = output.width // tile.width + logger.debug("=> %s (scale factor %s)", output, scale_factor) + newrow.append([x * scale_factor, w * scale_factor, output]) + p.update(1) + newtiles.append([y * scale_factor, h * scale_factor, newrow]) + + newgrid = images.Grid( + newtiles, + tile_w=grid.tile_w * scale_factor, + tile_h=grid.tile_h * scale_factor, + image_w=grid.image_w * scale_factor, + image_h=grid.image_h * scale_factor, + overlap=grid.overlap * scale_factor, + ) + return images.combine_grid(newgrid) + + +def tiled_upscale_2( + img, + model, + *, + tile_size: int, + tile_overlap: int, + scale: int, + device, + desc="Tiled upscale", +): + # Alternative implementation of `upscale_with_model` originally used by + # SwinIR and ScuNET. It differs from `upscale_with_model` in that tiling and + # weighting is done in PyTorch space, as opposed to `images.Grid` doing it in + # Pillow space without weighting. + b, c, h, w = img.size() + tile_size = min(tile_size, h, w) + + if tile_size <= 0: + logger.debug("Upscaling %s without tiling", img.shape) + return model(img) + + stride = tile_size - tile_overlap + h_idx_list = list(range(0, h - tile_size, stride)) + [h - tile_size] + w_idx_list = list(range(0, w - tile_size, stride)) + [w - tile_size] + result = torch.zeros( + b, + c, + h * scale, + w * scale, + device=device, + ).type_as(img) + weights = torch.zeros_like(result) + logger.debug("Upscaling %s to %s with tiles", img.shape, result.shape) + with tqdm.tqdm(total=len(h_idx_list) * len(w_idx_list), desc=desc) as pbar: + for h_idx in h_idx_list: + if shared.state.interrupted or shared.state.skipped: + break + + for w_idx in w_idx_list: + if shared.state.interrupted or shared.state.skipped: + break + + in_patch = img[ + ..., + h_idx : h_idx + tile_size, + w_idx : w_idx + tile_size, + ] + out_patch = model(in_patch) + + result[ + ..., + h_idx * scale : (h_idx + tile_size) * scale, + w_idx * scale : (w_idx + tile_size) * scale, + ].add_(out_patch) + + out_patch_mask = torch.ones_like(out_patch) + + weights[ + ..., + h_idx * scale : (h_idx + tile_size) * scale, + w_idx * scale : (w_idx + tile_size) * scale, + ].add_(out_patch_mask) + + pbar.update(1) + + output = result.div_(weights) + + return output |