aboutsummaryrefslogtreecommitdiffstats
path: root/modules/xpu_specific.py
diff options
context:
space:
mode:
authorKohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com>2023-12-03 02:54:54 +0000
committerKohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com>2023-12-03 02:54:54 +0000
commit9a15ae2a92e55d614fe515cd0a104d90b854b23f (patch)
tree7977ea1ea27cfc1d21e652433f8bbc0faec0ddc9 /modules/xpu_specific.py
parent50a21cb09fe3e9ea2d4fe058e0484e192c8a86e3 (diff)
parentac02216e540cd581f9169c6c791e55721e3117b0 (diff)
downloadstable-diffusion-webui-gfx803-9a15ae2a92e55d614fe515cd0a104d90b854b23f.tar.gz
stable-diffusion-webui-gfx803-9a15ae2a92e55d614fe515cd0a104d90b854b23f.tar.bz2
stable-diffusion-webui-gfx803-9a15ae2a92e55d614fe515cd0a104d90b854b23f.zip
Merge branch 'dev' into test-fp8
Diffstat (limited to 'modules/xpu_specific.py')
-rw-r--r--modules/xpu_specific.py50
1 files changed, 50 insertions, 0 deletions
diff --git a/modules/xpu_specific.py b/modules/xpu_specific.py
new file mode 100644
index 00000000..d933c790
--- /dev/null
+++ b/modules/xpu_specific.py
@@ -0,0 +1,50 @@
+from modules import shared
+from modules.sd_hijack_utils import CondFunc
+
+has_ipex = False
+try:
+ import torch
+ import intel_extension_for_pytorch as ipex # noqa: F401
+ has_ipex = True
+except Exception:
+ pass
+
+
+def check_for_xpu():
+ return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available()
+
+
+def get_xpu_device_string():
+ if shared.cmd_opts.device_id is not None:
+ return f"xpu:{shared.cmd_opts.device_id}"
+ return "xpu"
+
+
+def torch_xpu_gc():
+ with torch.xpu.device(get_xpu_device_string()):
+ torch.xpu.empty_cache()
+
+
+has_xpu = check_for_xpu()
+
+if has_xpu:
+ # W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device
+ CondFunc('torch.Generator',
+ lambda orig_func, device=None: torch.xpu.Generator(device),
+ lambda orig_func, device=None: device is not None and device.type == "xpu")
+
+ # W/A for some OPs that could not handle different input dtypes
+ CondFunc('torch.nn.functional.layer_norm',
+ lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
+ orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
+ lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
+ weight is not None and input.dtype != weight.data.dtype)
+ CondFunc('torch.nn.modules.GroupNorm.forward',
+ lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
+ lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
+ CondFunc('torch.nn.modules.linear.Linear.forward',
+ lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
+ lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
+ CondFunc('torch.nn.modules.conv.Conv2d.forward',
+ lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
+ lambda orig_func, self, input: input.dtype != self.weight.data.dtype)