aboutsummaryrefslogtreecommitdiffstats
path: root/modules
diff options
context:
space:
mode:
authorAUTOMATIC <16777216c@gmail.com>2022-11-19 09:47:52 +0000
committerAUTOMATIC <16777216c@gmail.com>2022-11-19 09:47:52 +0000
commit0d702930b068ca8da8eb0117613053a480d9439e (patch)
tree931e796719508e0db4122addb3fda6615d1ea3d7 /modules
parentff35ae9abb0e2d680bd881e219baf6c998019a9a (diff)
downloadstable-diffusion-webui-gfx803-0d702930b068ca8da8eb0117613053a480d9439e.tar.gz
stable-diffusion-webui-gfx803-0d702930b068ca8da8eb0117613053a480d9439e.tar.bz2
stable-diffusion-webui-gfx803-0d702930b068ca8da8eb0117613053a480d9439e.zip
renamed Inpainting strength infotext to Conditional mask weight, made it only appear if using inpainting model, made it possible to read the setting from it using the blue arrow button
Diffstat (limited to 'modules')
-rw-r--r--modules/generation_parameters_copypaste.py1
-rw-r--r--modules/processing.py9
2 files changed, 9 insertions, 1 deletions
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index 985ec95e..1408ea05 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -73,6 +73,7 @@ def integrate_settings_paste_fields(component_dict):
'sd_hypernetwork': 'Hypernet',
'sd_hypernetwork_strength': 'Hypernet strength',
'CLIP_stop_at_last_layers': 'Clip skip',
+ 'inpainting_mask_weight': 'Conditional mask weight',
'sd_model_checkpoint': 'Model hash',
}
settings_paste_fields = [
diff --git a/modules/processing.py b/modules/processing.py
index fb30aa81..def95846 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -113,6 +113,7 @@ class StableDiffusionProcessing():
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_noise = s_noise or opts.s_noise
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
+ self.is_using_inpainting_conditioning = False
if not seed_enable_extras:
self.subseed = -1
@@ -133,6 +134,8 @@ class StableDiffusionProcessing():
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
return x.new_zeros(x.shape[0], 5, 1, 1)
+ self.is_using_inpainting_conditioning = True
+
height = height or self.height
width = width or self.width
@@ -151,6 +154,8 @@ class StableDiffusionProcessing():
# Dummy zero conditioning if we're not using inpainting model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
+ self.is_using_inpainting_conditioning = True
+
# Handle the different mask inputs
if image_mask is not None:
if torch.is_tensor(image_mask):
@@ -234,6 +239,7 @@ class Processed:
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
+ self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
self.all_prompts = all_prompts or [self.prompt]
self.all_seeds = all_seeds or [self.seed]
@@ -268,6 +274,7 @@ class Processed:
"styles": self.styles,
"job_timestamp": self.job_timestamp,
"clip_skip": self.clip_skip,
+ "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
}
return json.dumps(obj)
@@ -394,7 +401,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None),
- "Inpainting strength": (None if getattr(p, 'denoising_strength', None) is None else getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)),
+ "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,