diff options
author | Keavon Chambers <keavon@keavon.com> | 2022-11-19 18:34:31 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-11-19 18:34:31 +0000 |
commit | 2f90496b19cd9c512633742db97b072a7075f017 (patch) | |
tree | 60d2dddd69172d9b5cf58c8da2bd64c61132f4fa /modules | |
parent | a258fd60dbe2d68325339405a2aa72816d06d2fd (diff) | |
parent | 47a44c7e421b98ca07e92dbf88769b04c9e28f86 (diff) | |
download | stable-diffusion-webui-gfx803-2f90496b19cd9c512633742db97b072a7075f017.tar.gz stable-diffusion-webui-gfx803-2f90496b19cd9c512633742db97b072a7075f017.tar.bz2 stable-diffusion-webui-gfx803-2f90496b19cd9c512633742db97b072a7075f017.zip |
Merge branch 'master' into cors-regex
Diffstat (limited to 'modules')
-rw-r--r-- | modules/api/api.py | 118 | ||||
-rw-r--r-- | modules/api/models.py | 7 | ||||
-rw-r--r-- | modules/devices.py | 32 | ||||
-rw-r--r-- | modules/extensions.py | 9 | ||||
-rw-r--r-- | modules/generation_parameters_copypaste.py | 1 | ||||
-rw-r--r-- | modules/hypernetworks/hypernetwork.py | 4 | ||||
-rw-r--r-- | modules/images.py | 2 | ||||
-rw-r--r-- | modules/img2img.py | 4 | ||||
-rw-r--r-- | modules/ngrok.py | 13 | ||||
-rw-r--r-- | modules/processing.py | 111 | ||||
-rw-r--r-- | modules/script_callbacks.py | 62 | ||||
-rw-r--r-- | modules/script_loading.py | 34 | ||||
-rw-r--r-- | modules/scripts.py | 113 | ||||
-rw-r--r-- | modules/sd_hijack.py | 24 | ||||
-rw-r--r-- | modules/sd_hijack_inpainting.py | 3 | ||||
-rw-r--r-- | modules/sd_models.py | 29 | ||||
-rw-r--r-- | modules/sd_samplers.py | 13 | ||||
-rw-r--r-- | modules/sd_vae.py | 36 | ||||
-rw-r--r-- | modules/shared.py | 31 | ||||
-rw-r--r-- | modules/styles.py | 11 | ||||
-rw-r--r-- | modules/textual_inversion/dataset.py | 7 | ||||
-rw-r--r-- | modules/textual_inversion/preprocess.py | 162 | ||||
-rw-r--r-- | modules/textual_inversion/textual_inversion.py | 4 | ||||
-rw-r--r-- | modules/textual_inversion/ui.py | 2 | ||||
-rw-r--r-- | modules/txt2img.py | 3 | ||||
-rw-r--r-- | modules/ui.py | 82 | ||||
-rw-r--r-- | modules/ui_extensions.py | 7 |
27 files changed, 624 insertions, 300 deletions
diff --git a/modules/api/api.py b/modules/api/api.py index 688469ad..79b2c818 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -5,16 +5,22 @@ import uvicorn from threading import Lock from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image from fastapi import APIRouter, Depends, FastAPI, HTTPException +from fastapi.security import HTTPBasic, HTTPBasicCredentials +from secrets import compare_digest + import modules.shared as shared +from modules import sd_samplers from modules.api.models import * from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images -from modules.sd_samplers import all_samplers from modules.extras import run_extras, run_pnginfo from PIL import PngImagePlugin from modules.sd_models import checkpoints_list from modules.realesrgan_model import get_realesrgan_models from typing import List +if shared.cmd_opts.deepdanbooru: + from modules.deepbooru import get_deepbooru_tags + def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) @@ -22,8 +28,12 @@ def upscaler_to_index(name: str): raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}") -sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) +def validate_sampler_name(name): + config = sd_samplers.all_samplers_map.get(name, None) + if config is None: + raise HTTPException(status_code=404, detail="Sampler not found") + return name def setUpscalers(req: dict): reqDict = vars(req) @@ -54,39 +64,53 @@ def encode_pil_to_base64(image): class Api: def __init__(self, app: FastAPI, queue_lock: Lock): + if shared.cmd_opts.api_auth: + self.credenticals = dict() + for auth in shared.cmd_opts.api_auth.split(","): + user, password = auth.split(":") + self.credenticals[user] = password + self.router = APIRouter() self.app = app self.queue_lock = queue_lock - self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) - self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) - self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) - self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) - self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) - self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) - self.app.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"]) - self.app.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) - self.app.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel) - self.app.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) - self.app.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel) - self.app.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem]) - self.app.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem]) - self.app.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem]) - self.app.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem]) - self.app.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem]) - self.app.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem]) - self.app.add_api_route("/sdapi/v1/prompt-styles", self.get_promp_styles, methods=["GET"], response_model=List[PromptStyleItem]) - self.app.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str]) - self.app.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem]) + self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) + self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) + self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) + self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) + self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) + self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) + self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"]) + self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) + self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"]) + self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel) + self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) + self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel) + self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem]) + self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem]) + self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem]) + self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem]) + self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem]) + self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem]) + self.add_api_route("/sdapi/v1/prompt-styles", self.get_promp_styles, methods=["GET"], response_model=List[PromptStyleItem]) + self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str]) + self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem]) + + def add_api_route(self, path: str, endpoint, **kwargs): + if shared.cmd_opts.api_auth: + return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs) + return self.app.add_api_route(path, endpoint, **kwargs) + + def auth(self, credenticals: HTTPBasicCredentials = Depends(HTTPBasic())): + if credenticals.username in self.credenticals: + if compare_digest(credenticals.password, self.credenticals[credenticals.username]): + return True + + raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"}) def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): - sampler_index = sampler_to_index(txt2imgreq.sampler_index) - - if sampler_index is None: - raise HTTPException(status_code=404, detail="Sampler not found") - populate = txt2imgreq.copy(update={ # Override __init__ params "sd_model": shared.sd_model, - "sampler_index": sampler_index[0], + "sampler_name": validate_sampler_name(txt2imgreq.sampler_index), "do_not_save_samples": True, "do_not_save_grid": True } @@ -106,12 +130,6 @@ class Api: return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): - sampler_index = sampler_to_index(img2imgreq.sampler_index) - - if sampler_index is None: - raise HTTPException(status_code=404, detail="Sampler not found") - - init_images = img2imgreq.init_images if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") @@ -120,10 +138,9 @@ class Api: if mask: mask = decode_base64_to_image(mask) - populate = img2imgreq.copy(update={ # Override __init__ params "sd_model": shared.sd_model, - "sampler_index": sampler_index[0], + "sampler_name": validate_sampler_name(img2imgreq.sampler_index), "do_not_save_samples": True, "do_not_save_grid": True, "mask": mask @@ -220,11 +237,20 @@ class Api: if image_b64 is None: raise HTTPException(status_code=404, detail="Image not found") - img = self.__base64_to_image(image_b64) + img = decode_base64_to_image(image_b64) + img = img.convert('RGB') # Override object param with self.queue_lock: - processed = shared.interrogator.interrogate(img) + if interrogatereq.model == "clip": + processed = shared.interrogator.interrogate(img) + elif interrogatereq.model == "deepdanbooru": + if shared.cmd_opts.deepdanbooru: + processed = get_deepbooru_tags(img) + else: + raise HTTPException(status_code=404, detail="Model not found. Add --deepdanbooru when launching for using the model.") + else: + raise HTTPException(status_code=404, detail="Model not found") return InterrogateResponse(caption=processed) @@ -233,6 +259,9 @@ class Api: return {} + def skip(self): + shared.state.skip() + def get_config(self): options = {} for key in shared.opts.data.keys(): @@ -244,14 +273,9 @@ class Api: return options - def set_config(self, req: OptionsModel): - # currently req has all options fields even if you send a dict like { "send_seed": false }, which means it will - # overwrite all options with default values. - raise RuntimeError('Setting options via API is not supported') - - reqDict = vars(req) - for o in reqDict: - setattr(shared.opts, o, reqDict[o]) + def set_config(self, req: Dict[str, Any]): + for k, v in req.items(): + shared.opts.set(k, v) shared.opts.save(shared.config_filename) return @@ -260,7 +284,7 @@ class Api: return vars(shared.cmd_opts) def get_samplers(self): - return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers] + return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers] def get_upscalers(self): upscalers = [] diff --git a/modules/api/models.py b/modules/api/models.py index 34dbfa16..f77951fc 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -170,14 +170,15 @@ class ProgressResponse(BaseModel): class InterrogateRequest(BaseModel): image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") + model: str = Field(default="clip", title="Model", description="The interrogate model used.") class InterrogateResponse(BaseModel): caption: str = Field(default=None, title="Caption", description="The generated caption for the image.") fields = {} -for key, value in opts.data.items(): - metadata = opts.data_labels.get(key) - optType = opts.typemap.get(type(value), type(value)) +for key, metadata in opts.data_labels.items(): + value = opts.data.get(key) + optType = opts.typemap.get(type(metadata.default), type(value)) if (metadata is not None): fields.update({key: (Optional[optType], Field( diff --git a/modules/devices.py b/modules/devices.py index 7511e1dc..67165bf6 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -3,16 +3,27 @@ import contextlib import torch from modules import errors -# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility -has_mps = getattr(torch, 'has_mps', False) -cpu = torch.device("cpu") +# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+. +# check `getattr` and try it for compatibility +def has_mps() -> bool: + if not getattr(torch, 'has_mps', False): + return False + try: + torch.zeros(1).to(torch.device("mps")) + return True + except Exception: + return False + def extract_device_id(args, name): for x in range(len(args)): - if name in args[x]: return args[x+1] + if name in args[x]: + return args[x + 1] + return None + def get_optimal_device(): if torch.cuda.is_available(): from modules import shared @@ -25,7 +36,7 @@ def get_optimal_device(): else: return torch.device("cuda") - if has_mps: + if has_mps(): return torch.device("mps") return cpu @@ -45,10 +56,12 @@ def enable_tf32(): errors.run(enable_tf32, "Enabling TF32") +cpu = torch.device("cpu") device = device_interrogate = device_gfpgan = device_swinir = device_esrgan = device_scunet = device_codeformer = None dtype = torch.float16 dtype_vae = torch.float16 + def randn(seed, shape): # Pytorch currently doesn't handle setting randomness correctly when the metal backend is used. if device.type == 'mps': @@ -82,6 +95,11 @@ def autocast(disable=False): return torch.autocast("cuda") + # MPS workaround for https://github.com/pytorch/pytorch/issues/79383 -def mps_contiguous(input_tensor, device): return input_tensor.contiguous() if device.type == 'mps' else input_tensor -def mps_contiguous_to(input_tensor, device): return mps_contiguous(input_tensor, device).to(device) +def mps_contiguous(input_tensor, device): + return input_tensor.contiguous() if device.type == 'mps' else input_tensor + + +def mps_contiguous_to(input_tensor, device): + return mps_contiguous(input_tensor, device).to(device) diff --git a/modules/extensions.py b/modules/extensions.py index 8e0977fd..db9c4200 100644 --- a/modules/extensions.py +++ b/modules/extensions.py @@ -6,7 +6,6 @@ import git from modules import paths, shared
-
extensions = []
extensions_dir = os.path.join(paths.script_path, "extensions")
@@ -66,9 +65,12 @@ class Extension: self.can_update = False
self.status = "latest"
- def pull(self):
+ def fetch_and_reset_hard(self):
repo = git.Repo(self.path)
- repo.remotes.origin.pull()
+ # Fix: `error: Your local changes to the following files would be overwritten by merge`,
+ # because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
+ repo.git.fetch('--all')
+ repo.git.reset('--hard', 'origin')
def list_extensions():
@@ -84,3 +86,4 @@ def list_extensions(): extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions)
extensions.append(extension)
+
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 985ec95e..1408ea05 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -73,6 +73,7 @@ def integrate_settings_paste_fields(component_dict): 'sd_hypernetwork': 'Hypernet',
'sd_hypernetwork_strength': 'Hypernet strength',
'CLIP_stop_at_last_layers': 'Clip skip',
+ 'inpainting_mask_weight': 'Conditional mask weight',
'sd_model_checkpoint': 'Model hash',
}
settings_paste_fields = [
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 7f182712..fbb87dd1 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -12,7 +12,7 @@ import torch import tqdm
from einops import rearrange, repeat
from ldm.util import default
-from modules import devices, processing, sd_models, shared
+from modules import devices, processing, sd_models, shared, sd_samplers
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
@@ -535,7 +535,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
- p.sampler_index = preview_sampler_index
+ p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
diff --git a/modules/images.py b/modules/images.py index ae705cbd..26d5b7a9 100644 --- a/modules/images.py +++ b/modules/images.py @@ -303,7 +303,7 @@ class FilenameGenerator: 'width': lambda self: self.image.width,
'height': lambda self: self.image.height,
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
- 'sampler': lambda self: self.p and sanitize_filename_part(sd_samplers.samplers[self.p.sampler_index].name, replace_spaces=False),
+ 'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
diff --git a/modules/img2img.py b/modules/img2img.py index be9f3653..9fc5b693 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -6,7 +6,7 @@ import traceback import numpy as np
from PIL import Image, ImageOps, ImageChops
-from modules import devices
+from modules import devices, sd_samplers
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
@@ -99,7 +99,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
- sampler_index=sampler_index,
+ sampler_index=sd_samplers.samplers_for_img2img[sampler_index].name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
diff --git a/modules/ngrok.py b/modules/ngrok.py index 5c5f349a..10d2179f 100644 --- a/modules/ngrok.py +++ b/modules/ngrok.py @@ -1,14 +1,23 @@ from pyngrok import ngrok, conf, exception - def connect(token, port, region): + account = None if token == None: token = 'None' + else: + if ':' in token: + # token = authtoken:username:password + account = token.split(':')[1] + ':' + token.split(':')[-1] + token = token.split(':')[0] + config = conf.PyngrokConfig( auth_token=token, region=region ) try: - public_url = ngrok.connect(port, pyngrok_config=config).public_url + if account == None: + public_url = ngrok.connect(port, pyngrok_config=config).public_url + else: + public_url = ngrok.connect(port, pyngrok_config=config, auth=account).public_url except exception.PyngrokNgrokError: print(f'Invalid ngrok authtoken, ngrok connection aborted.\n' f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken') diff --git a/modules/processing.py b/modules/processing.py index 03c9143d..accb31d1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -2,6 +2,7 @@ import json import math
import os
import sys
+import warnings
import torch
import numpy as np
@@ -66,19 +67,15 @@ def apply_overlay(image, paste_loc, index, overlays): return image
-def get_correct_sampler(p):
- if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
- return sd_samplers.samplers
- elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
- return sd_samplers.samplers_for_img2img
- elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
- return sd_samplers.samplers
class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_index: int = 0, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None):
+ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, sampler_index: int = None):
+ if sampler_index is not None:
+ warnings.warn("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name")
+
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
@@ -91,7 +88,7 @@ class StableDiffusionProcessing(): self.subseed_strength: float = subseed_strength
self.seed_resize_from_h: int = seed_resize_from_h
self.seed_resize_from_w: int = seed_resize_from_w
- self.sampler_index: int = sampler_index
+ self.sampler_name: str = sampler_name
self.batch_size: int = batch_size
self.n_iter: int = n_iter
self.steps: int = steps
@@ -116,6 +113,7 @@ class StableDiffusionProcessing(): self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_noise = s_noise or opts.s_noise
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
+ self.is_using_inpainting_conditioning = False
if not seed_enable_extras:
self.subseed = -1
@@ -126,6 +124,7 @@ class StableDiffusionProcessing(): self.scripts = None
self.script_args = None
self.all_prompts = None
+ self.all_negative_prompts = None
self.all_seeds = None
self.all_subseeds = None
@@ -136,6 +135,8 @@ class StableDiffusionProcessing(): # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
return x.new_zeros(x.shape[0], 5, 1, 1)
+ self.is_using_inpainting_conditioning = True
+
height = height or self.height
width = width or self.width
@@ -154,6 +155,8 @@ class StableDiffusionProcessing(): # Dummy zero conditioning if we're not using inpainting model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
+ self.is_using_inpainting_conditioning = True
+
# Handle the different mask inputs
if image_mask is not None:
if torch.is_tensor(image_mask):
@@ -200,7 +203,7 @@ class StableDiffusionProcessing(): class Processed:
- def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
+ def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
self.images = images_list
self.prompt = p.prompt
self.negative_prompt = p.negative_prompt
@@ -210,8 +213,7 @@ class Processed: self.info = info
self.width = p.width
self.height = p.height
- self.sampler_index = p.sampler_index
- self.sampler = sd_samplers.samplers[p.sampler_index].name
+ self.sampler_name = p.sampler_name
self.cfg_scale = p.cfg_scale
self.steps = p.steps
self.batch_size = p.batch_size
@@ -238,17 +240,20 @@ class Processed: self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
+ self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
- self.all_prompts = all_prompts or [self.prompt]
- self.all_seeds = all_seeds or [self.seed]
- self.all_subseeds = all_subseeds or [self.subseed]
+ self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
+ self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
+ self.all_seeds = all_seeds or p.all_seeds or [self.seed]
+ self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
self.infotexts = infotexts or [info]
def js(self):
obj = {
- "prompt": self.prompt,
+ "prompt": self.all_prompts[0],
"all_prompts": self.all_prompts,
- "negative_prompt": self.negative_prompt,
+ "negative_prompt": self.all_negative_prompts[0],
+ "all_negative_prompts": self.all_negative_prompts,
"seed": self.seed,
"all_seeds": self.all_seeds,
"subseed": self.subseed,
@@ -256,8 +261,7 @@ class Processed: "subseed_strength": self.subseed_strength,
"width": self.width,
"height": self.height,
- "sampler_index": self.sampler_index,
- "sampler": self.sampler,
+ "sampler_name": self.sampler_name,
"cfg_scale": self.cfg_scale,
"steps": self.steps,
"batch_size": self.batch_size,
@@ -273,6 +277,7 @@ class Processed: "styles": self.styles,
"job_timestamp": self.job_timestamp,
"clip_skip": self.clip_skip,
+ "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
}
return json.dumps(obj)
@@ -384,7 +389,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration generation_params = {
"Steps": p.steps,
- "Sampler": get_correct_sampler(p)[p.sampler_index].name,
+ "Sampler": p.sampler_name,
"CFG scale": p.cfg_scale,
"Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
@@ -399,6 +404,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None),
+ "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
@@ -408,7 +414,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
- negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
+ negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[0] if p.all_negative_prompts[0] else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
@@ -437,10 +443,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: else:
assert p.prompt is not None
- with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
- processed = Processed(p, [], p.seed, "")
- file.write(processed.infotext(p, 0))
-
devices.torch_gc()
seed = get_fixed_seed(p.seed)
@@ -451,12 +453,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: comments = {}
- shared.prompt_styles.apply_styles(p)
-
if type(p.prompt) == list:
- p.all_prompts = p.prompt
+ p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
+ else:
+ p.all_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
+
+ if type(p.negative_prompt) == list:
+ p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
else:
- p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
+ p.all_negative_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
if type(seed) == list:
p.all_seeds = seed
@@ -471,6 +476,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: def infotext(iteration=0, position_in_batch=0):
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
+ with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
+ processed = Processed(p, [], p.seed, "")
+ file.write(processed.infotext(p, 0))
+
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
@@ -495,6 +504,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: break
prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
+ negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
@@ -505,7 +515,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
with devices.autocast():
- uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
+ uc = prompt_parser.get_learned_conditioning(shared.sd_model, negative_prompts, p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:
@@ -591,7 +601,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: devices.torch_gc()
- res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
+ res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
if p.scripts is not None:
p.scripts.postprocess(p, res)
@@ -645,7 +655,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@@ -706,7 +716,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): shared.state.nextjob()
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@@ -730,7 +740,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.denoising_strength: float = denoising_strength
self.init_latent = None
self.image_mask = mask
- #self.image_unblurred_mask = None
self.latent_mask = None
self.mask_for_overlay = None
self.mask_blur = mask_blur
@@ -743,39 +752,39 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.image_conditioning = None
def init(self, all_prompts, all_seeds, all_subseeds):
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
crop_region = None
- if self.image_mask is not None:
- self.image_mask = self.image_mask.convert('L')
+ image_mask = self.image_mask
- if self.inpainting_mask_invert:
- self.image_mask = ImageOps.invert(self.image_mask)
+ if image_mask is not None:
+ image_mask = image_mask.convert('L')
- #self.image_unblurred_mask = self.image_mask
+ if self.inpainting_mask_invert:
+ image_mask = ImageOps.invert(image_mask)
if self.mask_blur > 0:
- self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
+ image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
if self.inpaint_full_res:
- self.mask_for_overlay = self.image_mask
- mask = self.image_mask.convert('L')
+ self.mask_for_overlay = image_mask
+ mask = image_mask.convert('L')
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
- self.image_mask = images.resize_image(2, mask, self.width, self.height)
+ image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1)
else:
- self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
- np_mask = np.array(self.image_mask)
+ image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
+ np_mask = np.array(image_mask)
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
self.mask_for_overlay = Image.fromarray(np_mask)
self.overlay_images = []
- latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
+ latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
if add_color_corrections:
@@ -787,7 +796,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): if crop_region is None:
image = images.resize_image(self.resize_mode, image, self.width, self.height)
- if self.image_mask is not None:
+ if image_mask is not None:
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
@@ -797,7 +806,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = image.crop(crop_region)
image = images.resize_image(2, image, self.width, self.height)
- if self.image_mask is not None:
+ if image_mask is not None:
if self.inpainting_fill != 1:
image = masking.fill(image, latent_mask)
@@ -829,7 +838,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
- if self.image_mask is not None:
+ if image_mask is not None:
init_mask = latent_mask
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
@@ -846,7 +855,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
- self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
+ self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 74dfb880..8e22f875 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -7,6 +7,7 @@ from typing import Optional from fastapi import FastAPI
from gradio import Blocks
+
def report_exception(c, job):
print(f"Error executing callback {job} for {c.script}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
@@ -45,15 +46,23 @@ class CFGDenoiserParams: """Total number of sampling steps planned"""
+class UiTrainTabParams:
+ def __init__(self, txt2img_preview_params):
+ self.txt2img_preview_params = txt2img_preview_params
+
+
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
callback_map = dict(
callbacks_app_started=[],
callbacks_model_loaded=[],
callbacks_ui_tabs=[],
+ callbacks_ui_train_tabs=[],
callbacks_ui_settings=[],
callbacks_before_image_saved=[],
callbacks_image_saved=[],
- callbacks_cfg_denoiser=[]
+ callbacks_cfg_denoiser=[],
+ callbacks_before_component=[],
+ callbacks_after_component=[],
)
@@ -61,6 +70,7 @@ def clear_callbacks(): for callback_list in callback_map.values():
callback_list.clear()
+
def app_started_callback(demo: Optional[Blocks], app: FastAPI):
for c in callback_map['callbacks_app_started']:
try:
@@ -79,7 +89,7 @@ def model_loaded_callback(sd_model): def ui_tabs_callback():
res = []
-
+
for c in callback_map['callbacks_ui_tabs']:
try:
res += c.callback() or []
@@ -89,6 +99,14 @@ def ui_tabs_callback(): return res
+def ui_train_tabs_callback(params: UiTrainTabParams):
+ for c in callback_map['callbacks_ui_train_tabs']:
+ try:
+ c.callback(params)
+ except Exception:
+ report_exception(c, 'callbacks_ui_train_tabs')
+
+
def ui_settings_callback():
for c in callback_map['callbacks_ui_settings']:
try:
@@ -121,6 +139,22 @@ def cfg_denoiser_callback(params: CFGDenoiserParams): report_exception(c, 'cfg_denoiser_callback')
+def before_component_callback(component, **kwargs):
+ for c in callback_map['callbacks_before_component']:
+ try:
+ c.callback(component, **kwargs)
+ except Exception:
+ report_exception(c, 'before_component_callback')
+
+
+def after_component_callback(component, **kwargs):
+ for c in callback_map['callbacks_after_component']:
+ try:
+ c.callback(component, **kwargs)
+ except Exception:
+ report_exception(c, 'after_component_callback')
+
+
def add_callback(callbacks, fun):
stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
@@ -169,6 +203,13 @@ def on_ui_tabs(callback): add_callback(callback_map['callbacks_ui_tabs'], callback)
+def on_ui_train_tabs(callback):
+ """register a function to be called when the UI is creating new tabs for the train tab.
+ Create your new tabs with gr.Tab.
+ """
+ add_callback(callback_map['callbacks_ui_train_tabs'], callback)
+
+
def on_ui_settings(callback):
"""register a function to be called before UI settings are populated; add your settings
by using shared.opts.add_option(shared.OptionInfo(...)) """
@@ -197,3 +238,20 @@ def on_cfg_denoiser(callback): - params: CFGDenoiserParams - parameters to be passed to the inner model and sampling state details.
"""
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
+
+
+def on_before_component(callback):
+ """register a function to be called before a component is created.
+ The callback is called with arguments:
+ - component - gradio component that is about to be created.
+ - **kwargs - args to gradio.components.IOComponent.__init__ function
+
+ Use elem_id/label fields of kwargs to figure out which component it is.
+ This can be useful to inject your own components somewhere in the middle of vanilla UI.
+ """
+ add_callback(callback_map['callbacks_before_component'], callback)
+
+
+def on_after_component(callback):
+ """register a function to be called after a component is created. See on_before_component for more."""
+ add_callback(callback_map['callbacks_after_component'], callback)
diff --git a/modules/script_loading.py b/modules/script_loading.py new file mode 100644 index 00000000..f93f0951 --- /dev/null +++ b/modules/script_loading.py @@ -0,0 +1,34 @@ +import os
+import sys
+import traceback
+from types import ModuleType
+
+
+def load_module(path):
+ with open(path, "r", encoding="utf8") as file:
+ text = file.read()
+
+ compiled = compile(text, path, 'exec')
+ module = ModuleType(os.path.basename(path))
+ exec(compiled, module.__dict__)
+
+ return module
+
+
+def preload_extensions(extensions_dir, parser):
+ if not os.path.isdir(extensions_dir):
+ return
+
+ for dirname in sorted(os.listdir(extensions_dir)):
+ preload_script = os.path.join(extensions_dir, dirname, "preload.py")
+ if not os.path.isfile(preload_script):
+ continue
+
+ try:
+ module = load_module(preload_script)
+ if hasattr(module, 'preload'):
+ module.preload(parser)
+
+ except Exception:
+ print(f"Error running preload() for {preload_script}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
diff --git a/modules/scripts.py b/modules/scripts.py index 637b2329..b934d881 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -6,7 +6,7 @@ from collections import namedtuple import gradio as gr
from modules.processing import StableDiffusionProcessing
-from modules import shared, paths, script_callbacks, extensions
+from modules import shared, paths, script_callbacks, extensions, script_loading
AlwaysVisible = object()
@@ -17,6 +17,9 @@ class Script: args_to = None
alwayson = False
+ is_txt2img = False
+ is_img2img = False
+
"""A gr.Group component that has all script's UI inside it"""
group = None
@@ -93,6 +96,23 @@ class Script: pass
+ def before_component(self, component, **kwargs):
+ """
+ Called before a component is created.
+ Use elem_id/label fields of kwargs to figure out which component it is.
+ This can be useful to inject your own components somewhere in the middle of vanilla UI.
+ You can return created components in the ui() function to add them to the list of arguments for your processing functions
+ """
+
+ pass
+
+ def after_component(self, component, **kwargs):
+ """
+ Called after a component is created. Same as above.
+ """
+
+ pass
+
def describe(self):
"""unused"""
return ""
@@ -140,7 +160,7 @@ def list_files_with_name(filename): continue
path = os.path.join(dirpath, filename)
- if os.path.isfile(filename):
+ if os.path.isfile(path):
res.append(path)
return res
@@ -161,13 +181,7 @@ def load_scripts(): sys.path = [scriptfile.basedir] + sys.path
current_basedir = scriptfile.basedir
- with open(scriptfile.path, "r", encoding="utf8") as file:
- text = file.read()
-
- from types import ModuleType
- compiled = compile(text, scriptfile.path, 'exec')
- module = ModuleType(scriptfile.filename)
- exec(compiled, module.__dict__)
+ module = script_loading.load_module(scriptfile.path)
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
@@ -201,12 +215,18 @@ class ScriptRunner: self.titles = []
self.infotext_fields = []
- def setup_ui(self, is_img2img):
+ def initialize_scripts(self, is_img2img):
+ self.scripts.clear()
+ self.alwayson_scripts.clear()
+ self.selectable_scripts.clear()
+
for script_class, path, basedir in scripts_data:
script = script_class()
script.filename = path
+ script.is_txt2img = not is_img2img
+ script.is_img2img = is_img2img
- visibility = script.show(is_img2img)
+ visibility = script.show(script.is_img2img)
if visibility == AlwaysVisible:
self.scripts.append(script)
@@ -217,6 +237,7 @@ class ScriptRunner: self.scripts.append(script)
self.selectable_scripts.append(script)
+ def setup_ui(self):
self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
inputs = [None]
@@ -226,7 +247,7 @@ class ScriptRunner: script.args_from = len(inputs)
script.args_to = len(inputs)
- controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
+ controls = wrap_call(script.ui, script.filename, "ui", script.is_img2img)
if controls is None:
return
@@ -326,33 +347,44 @@ class ScriptRunner: print(f"Error running postprocess: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
+ def before_component(self, component, **kwargs):
+ for script in self.scripts:
+ try:
+ script.before_component(component, **kwargs)
+ except Exception:
+ print(f"Error running before_component: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ def after_component(self, component, **kwargs):
+ for script in self.scripts:
+ try:
+ script.after_component(component, **kwargs)
+ except Exception:
+ print(f"Error running after_component: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)):
- with open(script.filename, "r", encoding="utf8") as file:
- args_from = script.args_from
- args_to = script.args_to
- filename = script.filename
- text = file.read()
+ args_from = script.args_from
+ args_to = script.args_to
+ filename = script.filename
- from types import ModuleType
+ module = cache.get(filename, None)
+ if module is None:
+ module = script_loading.load_module(script.filename)
+ cache[filename] = module
- module = cache.get(filename, None)
- if module is None:
- compiled = compile(text, filename, 'exec')
- module = ModuleType(script.filename)
- exec(compiled, module.__dict__)
- cache[filename] = module
-
- for key, script_class in module.__dict__.items():
- if type(script_class) == type and issubclass(script_class, Script):
- self.scripts[si] = script_class()
- self.scripts[si].filename = filename
- self.scripts[si].args_from = args_from
- self.scripts[si].args_to = args_to
+ for key, script_class in module.__dict__.items():
+ if type(script_class) == type and issubclass(script_class, Script):
+ self.scripts[si] = script_class()
+ self.scripts[si].filename = filename
+ self.scripts[si].args_from = args_from
+ self.scripts[si].args_to = args_to
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+scripts_current: ScriptRunner = None
def reload_script_body_only():
@@ -369,3 +401,22 @@ def reload_scripts(): scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
+def IOComponent_init(self, *args, **kwargs):
+ if scripts_current is not None:
+ scripts_current.before_component(self, **kwargs)
+
+ script_callbacks.before_component_callback(self, **kwargs)
+
+ res = original_IOComponent_init(self, *args, **kwargs)
+
+ script_callbacks.after_component_callback(self, **kwargs)
+
+ if scripts_current is not None:
+ scripts_current.after_component(self, **kwargs)
+
+ return res
+
+
+original_IOComponent_init = gr.components.IOComponent.__init__
+gr.components.IOComponent.__init__ = IOComponent_init
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index bc49d235..eaedac13 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -14,6 +14,8 @@ from modules.sd_hijack_optimizations import invokeAI_mps_available import ldm.modules.attention
import ldm.modules.diffusionmodules.model
+import ldm.models.diffusion.ddim
+import ldm.models.diffusion.plms
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
@@ -94,8 +96,8 @@ class StableDiffusionModelHijack: if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
+ self.apply_circular(False)
self.layers = None
- self.circular_enabled = False
self.clip = None
def apply_circular(self, enable):
@@ -406,3 +408,23 @@ def add_circular_option_to_conv_2d(): model_hijack = StableDiffusionModelHijack()
+
+
+def register_buffer(self, name, attr):
+ """
+ Fix register buffer bug for Mac OS.
+ """
+
+ if type(attr) == torch.Tensor:
+ if attr.device != devices.device:
+
+ if devices.has_mps():
+ attr = attr.to(device="mps", dtype=torch.float32)
+ else:
+ attr = attr.to(devices.device)
+
+ setattr(self, name, attr)
+
+
+ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
+ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index fd92a335..46714a4f 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -328,4 +328,5 @@ def do_inpainting_hijack(): ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms - ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms
\ No newline at end of file + ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms + diff --git a/modules/sd_models.py b/modules/sd_models.py index 34c57bfa..c59151e0 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -163,13 +163,14 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash
- if shared.opts.sd_checkpoint_cache > 0 and hasattr(model, "sd_checkpoint_info"):
- sd_vae.restore_base_vae(model)
- checkpoints_loaded[model.sd_checkpoint_info] = model.state_dict().copy()
+ cache_enabled = shared.opts.sd_checkpoint_cache > 0
- vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
-
- if checkpoint_info not in checkpoints_loaded:
+ if cache_enabled and checkpoint_info in checkpoints_loaded:
+ # use checkpoint cache
+ print(f"Loading weights [{sd_model_hash}] from cache")
+ model.load_state_dict(checkpoints_loaded[checkpoint_info])
+ else:
+ # load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
@@ -180,6 +181,10 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): del pl_sd
model.load_state_dict(sd, strict=False)
del sd
+
+ if cache_enabled:
+ # cache newly loaded model
+ checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
@@ -199,20 +204,16 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.first_stage_model.to(devices.dtype_vae)
- else:
- vae_name = sd_vae.get_filename(vae_file) if vae_file else None
- vae_message = f" with {vae_name} VAE" if vae_name else ""
- print(f"Loading weights [{sd_model_hash}]{vae_message} from cache")
- model.load_state_dict(checkpoints_loaded[checkpoint_info])
-
- if shared.opts.sd_checkpoint_cache > 0:
- while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
+ # clean up cache if limit is reached
+ if cache_enabled:
+ while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
checkpoints_loaded.popitem(last=False) # LRU
model.sd_model_hash = sd_model_hash
model.sd_model_checkpoint = checkpoint_file
model.sd_checkpoint_info = checkpoint_info
+ vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
sd_vae.load_vae(model, vae_file)
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 783992d2..4fe67854 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -46,16 +46,23 @@ all_samplers = [ SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]
+all_samplers_map = {x.name: x for x in all_samplers}
samplers = []
samplers_for_img2img = []
-def create_sampler_with_index(list_of_configs, index, model):
- config = list_of_configs[index]
+def create_sampler(name, model):
+ if name is not None:
+ config = all_samplers_map.get(name, None)
+ else:
+ config = all_samplers[0]
+
+ assert config is not None, f'bad sampler name: {name}'
+
sampler = config.constructor(model)
sampler.config = config
-
+
return sampler
diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 71e7a6e6..9c120975 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -83,47 +83,54 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): return vae_list -def resolve_vae(checkpoint_file, vae_file="auto"): +def get_vae_from_settings(vae_file="auto"): + # else, we load from settings, if not set to be default + if vae_file == "auto" and shared.opts.sd_vae is not None: + # if saved VAE settings isn't recognized, fallback to auto + vae_file = vae_dict.get(shared.opts.sd_vae, "auto") + # if VAE selected but not found, fallback to auto + if vae_file not in default_vae_values and not os.path.isfile(vae_file): + vae_file = "auto" + print(f"Selected VAE doesn't exist: {vae_file}") + return vae_file + + +def resolve_vae(checkpoint_file=None, vae_file="auto"): global first_load, vae_dict, vae_list # if vae_file argument is provided, it takes priority, but not saved if vae_file and vae_file not in default_vae_list: if not os.path.isfile(vae_file): + print(f"VAE provided as function argument doesn't exist: {vae_file}") vae_file = "auto" - print("VAE provided as function argument doesn't exist") # for the first load, if vae-path is provided, it takes priority, saved, and failure is reported if first_load and shared.cmd_opts.vae_path is not None: if os.path.isfile(shared.cmd_opts.vae_path): vae_file = shared.cmd_opts.vae_path shared.opts.data['sd_vae'] = get_filename(vae_file) else: - print("VAE provided as command line argument doesn't exist") - # else, we load from settings - if vae_file == "auto" and shared.opts.sd_vae is not None: - # if saved VAE settings isn't recognized, fallback to auto - vae_file = vae_dict.get(shared.opts.sd_vae, "auto") - # if VAE selected but not found, fallback to auto - if vae_file not in default_vae_values and not os.path.isfile(vae_file): - vae_file = "auto" - print("Selected VAE doesn't exist") + print(f"VAE provided as command line argument doesn't exist: {vae_file}") + # fallback to selector in settings, if vae selector not set to act as default fallback + if not shared.opts.sd_vae_as_default: + vae_file = get_vae_from_settings(vae_file) # vae-path cmd arg takes priority for auto if vae_file == "auto" and shared.cmd_opts.vae_path is not None: if os.path.isfile(shared.cmd_opts.vae_path): vae_file = shared.cmd_opts.vae_path - print("Using VAE provided as command line argument") + print(f"Using VAE provided as command line argument: {vae_file}") # if still not found, try look for ".vae.pt" beside model model_path = os.path.splitext(checkpoint_file)[0] if vae_file == "auto": vae_file_try = model_path + ".vae.pt" if os.path.isfile(vae_file_try): vae_file = vae_file_try - print("Using VAE found beside selected model") + print(f"Using VAE found similar to selected model: {vae_file}") # if still not found, try look for ".vae.ckpt" beside model if vae_file == "auto": vae_file_try = model_path + ".vae.ckpt" if os.path.isfile(vae_file_try): vae_file = vae_file_try - print("Using VAE found beside selected model") + print(f"Using VAE found similar to selected model: {vae_file}") # No more fallbacks for auto if vae_file == "auto": vae_file = None @@ -139,6 +146,7 @@ def load_vae(model, vae_file=None): # save_settings = False if vae_file: + assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}" print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} diff --git a/modules/shared.py b/modules/shared.py index 55de286d..3af7d97b 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -3,7 +3,6 @@ import datetime import json
import os
import sys
-from collections import OrderedDict
import time
import gradio as gr
@@ -15,7 +14,7 @@ import modules.memmon import modules.sd_models
import modules.styles
import modules.devices as devices
-from modules import sd_samplers, sd_models, localization, sd_vae
+from modules import sd_samplers, sd_models, localization, sd_vae, extensions, script_loading
from modules.hypernetworks import hypernetwork
from modules.paths import models_path, script_path, sd_path
@@ -82,6 +81,7 @@ parser.add_argument("--enable-console-prompts", action='store_true', help="print parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
+parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
@@ -92,7 +92,10 @@ parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requ parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
+script_loading.preload_extensions(extensions.extensions_dir, parser)
+
cmd_opts = parser.parse_args()
+
restricted_opts = {
"samples_filename_pattern",
"directories_filename_pattern",
@@ -105,7 +108,7 @@ restricted_opts = { "outdir_save",
}
-cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen) and not cmd_opts.enable_insecure_extension_access
+cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_swinir, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'])
@@ -320,6 +323,8 @@ options_templates.update(options_section(('system', "System"), { options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
+ "shuffle_tags": OptionInfo(False, "Shuffleing tags by ',' when create texts."),
+ "tag_drop_out": OptionInfo(0, "Dropout tags when create texts", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.1}),
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
@@ -331,7 +336,8 @@ options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
- "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list),
+ "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list),
+ "sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
@@ -433,6 +439,23 @@ class Options: return super(Options, self).__getattribute__(item)
+ def set(self, key, value):
+ """sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
+
+ oldval = self.data.get(key, None)
+ if oldval == value:
+ return False
+
+ try:
+ setattr(self, key, value)
+ except RuntimeError:
+ return False
+
+ if self.data_labels[key].onchange is not None:
+ self.data_labels[key].onchange()
+
+ return True
+
def save(self, filename):
assert not cmd_opts.freeze_settings, "saving settings is disabled"
diff --git a/modules/styles.py b/modules/styles.py index 3bf5c5b6..ce6e71ca 100644 --- a/modules/styles.py +++ b/modules/styles.py @@ -65,17 +65,6 @@ class StyleDatabase: def apply_negative_styles_to_prompt(self, prompt, styles):
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
- def apply_styles(self, p: StableDiffusionProcessing) -> None:
- if isinstance(p.prompt, list):
- p.prompt = [self.apply_styles_to_prompt(prompt, p.styles) for prompt in p.prompt]
- else:
- p.prompt = self.apply_styles_to_prompt(p.prompt, p.styles)
-
- if isinstance(p.negative_prompt, list):
- p.negative_prompt = [self.apply_negative_styles_to_prompt(prompt, p.styles) for prompt in p.negative_prompt]
- else:
- p.negative_prompt = self.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)
-
def save_styles(self, path: str) -> None:
# Write to temporary file first, so we don't nuke the file if something goes wrong
fd, temp_path = tempfile.mkstemp(".csv")
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index ad726577..eb75c376 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -98,7 +98,12 @@ class PersonalizedBase(Dataset): def create_text(self, filename_text):
text = random.choice(self.lines)
text = text.replace("[name]", self.placeholder_token)
- text = text.replace("[filewords]", filename_text)
+ tags = filename_text.split(',')
+ if shared.opts.tag_drop_out != 0:
+ tags = [t for t in tags if random.random() > shared.opts.tag_drop_out]
+ if shared.opts.shuffle_tags:
+ random.shuffle(tags)
+ text = text.replace("[filewords]", ','.join(tags))
return text
def __len__(self):
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index e13b1894..488aa5b5 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -35,6 +35,84 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce deepbooru.release_process()
+def listfiles(dirname):
+ return os.listdir(dirname)
+
+
+class PreprocessParams:
+ src = None
+ dstdir = None
+ subindex = 0
+ flip = False
+ process_caption = False
+ process_caption_deepbooru = False
+ preprocess_txt_action = None
+
+
+def save_pic_with_caption(image, index, params: PreprocessParams, existing_caption=None):
+ caption = ""
+
+ if params.process_caption:
+ caption += shared.interrogator.generate_caption(image)
+
+ if params.process_caption_deepbooru:
+ if len(caption) > 0:
+ caption += ", "
+ caption += deepbooru.get_tags_from_process(image)
+
+ filename_part = params.src
+ filename_part = os.path.splitext(filename_part)[0]
+ filename_part = os.path.basename(filename_part)
+
+ basename = f"{index:05}-{params.subindex}-{filename_part}"
+ image.save(os.path.join(params.dstdir, f"{basename}.png"))
+
+ if params.preprocess_txt_action == 'prepend' and existing_caption:
+ caption = existing_caption + ' ' + caption
+ elif params.preprocess_txt_action == 'append' and existing_caption:
+ caption = caption + ' ' + existing_caption
+ elif params.preprocess_txt_action == 'copy' and existing_caption:
+ caption = existing_caption
+
+ caption = caption.strip()
+
+ if len(caption) > 0:
+ with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file:
+ file.write(caption)
+
+ params.subindex += 1
+
+
+def save_pic(image, index, params, existing_caption=None):
+ save_pic_with_caption(image, index, params, existing_caption=existing_caption)
+
+ if params.flip:
+ save_pic_with_caption(ImageOps.mirror(image), index, params, existing_caption=existing_caption)
+
+
+def split_pic(image, inverse_xy, width, height, overlap_ratio):
+ if inverse_xy:
+ from_w, from_h = image.height, image.width
+ to_w, to_h = height, width
+ else:
+ from_w, from_h = image.width, image.height
+ to_w, to_h = width, height
+ h = from_h * to_w // from_w
+ if inverse_xy:
+ image = image.resize((h, to_w))
+ else:
+ image = image.resize((to_w, h))
+
+ split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
+ y_step = (h - to_h) / (split_count - 1)
+ for i in range(split_count):
+ y = int(y_step * i)
+ if inverse_xy:
+ splitted = image.crop((y, 0, y + to_h, to_w))
+ else:
+ splitted = image.crop((0, y, to_w, y + to_h))
+ yield splitted
+
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False):
width = process_width
@@ -48,82 +126,28 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre os.makedirs(dst, exist_ok=True)
- files = os.listdir(src)
+ files = listfiles(src)
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
- def save_pic_with_caption(image, index, existing_caption=None):
- caption = ""
-
- if process_caption:
- caption += shared.interrogator.generate_caption(image)
-
- if process_caption_deepbooru:
- if len(caption) > 0:
- caption += ", "
- caption += deepbooru.get_tags_from_process(image)
-
- filename_part = filename
- filename_part = os.path.splitext(filename_part)[0]
- filename_part = os.path.basename(filename_part)
-
- basename = f"{index:05}-{subindex[0]}-{filename_part}"
- image.save(os.path.join(dst, f"{basename}.png"))
-
- if preprocess_txt_action == 'prepend' and existing_caption:
- caption = existing_caption + ' ' + caption
- elif preprocess_txt_action == 'append' and existing_caption:
- caption = caption + ' ' + existing_caption
- elif preprocess_txt_action == 'copy' and existing_caption:
- caption = existing_caption
-
- caption = caption.strip()
-
- if len(caption) > 0:
- with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file:
- file.write(caption)
-
- subindex[0] += 1
-
- def save_pic(image, index, existing_caption=None):
- save_pic_with_caption(image, index, existing_caption=existing_caption)
-
- if process_flip:
- save_pic_with_caption(ImageOps.mirror(image), index, existing_caption=existing_caption)
-
- def split_pic(image, inverse_xy):
- if inverse_xy:
- from_w, from_h = image.height, image.width
- to_w, to_h = height, width
- else:
- from_w, from_h = image.width, image.height
- to_w, to_h = width, height
- h = from_h * to_w // from_w
- if inverse_xy:
- image = image.resize((h, to_w))
- else:
- image = image.resize((to_w, h))
-
- split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
- y_step = (h - to_h) / (split_count - 1)
- for i in range(split_count):
- y = int(y_step * i)
- if inverse_xy:
- splitted = image.crop((y, 0, y + to_h, to_w))
- else:
- splitted = image.crop((0, y, to_w, y + to_h))
- yield splitted
-
+ params = PreprocessParams()
+ params.dstdir = dst
+ params.flip = process_flip
+ params.process_caption = process_caption
+ params.process_caption_deepbooru = process_caption_deepbooru
+ params.preprocess_txt_action = preprocess_txt_action
for index, imagefile in enumerate(tqdm.tqdm(files)):
- subindex = [0]
+ params.subindex = 0
filename = os.path.join(src, imagefile)
try:
img = Image.open(filename).convert("RGB")
except Exception:
continue
+ params.src = filename
+
existing_caption = None
existing_caption_filename = os.path.splitext(filename)[0] + '.txt'
if os.path.exists(existing_caption_filename):
@@ -143,8 +167,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre process_default_resize = True
if process_split and ratio < 1.0 and ratio <= split_threshold:
- for splitted in split_pic(img, inverse_xy):
- save_pic(splitted, index, existing_caption=existing_caption)
+ for splitted in split_pic(img, inverse_xy, width, height, overlap_ratio):
+ save_pic(splitted, index, params, existing_caption=existing_caption)
process_default_resize = False
if process_focal_crop and img.height != img.width:
@@ -165,11 +189,11 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre dnn_model_path = dnn_model_path,
)
for focal in autocrop.crop_image(img, autocrop_settings):
- save_pic(focal, index, existing_caption=existing_caption)
+ save_pic(focal, index, params, existing_caption=existing_caption)
process_default_resize = False
if process_default_resize:
img = images.resize_image(1, img, width, height)
- save_pic(img, index, existing_caption=existing_caption)
+ save_pic(img, index, params, existing_caption=existing_caption)
- shared.state.nextjob()
\ No newline at end of file + shared.state.nextjob()
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 0aeb0459..5e4d8688 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -10,7 +10,7 @@ import csv from PIL import Image, PngImagePlugin
-from modules import shared, devices, sd_hijack, processing, sd_models, images
+from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@@ -345,7 +345,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
- p.sampler_index = preview_sampler_index
+ p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py index d679e6f4..35c4feef 100644 --- a/modules/textual_inversion/ui.py +++ b/modules/textual_inversion/ui.py @@ -18,7 +18,7 @@ def create_embedding(name, initialization_text, nvpt, overwrite_old): def preprocess(*args):
modules.textual_inversion.preprocess.preprocess(*args)
- return "Preprocessing finished.", ""
+ return f"Preprocessing {'interrupted' if shared.state.interrupted else 'finished'}.", ""
def train_embedding(*args):
diff --git a/modules/txt2img.py b/modules/txt2img.py index 8e4e8677..c8f81176 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -1,4 +1,5 @@ import modules.scripts
+from modules import sd_samplers
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
@@ -21,7 +22,7 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
- sampler_index=sampler_index,
+ sampler_name=sd_samplers.samplers[sampler_index].name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
diff --git a/modules/ui.py b/modules/ui.py index 34c31ef1..a5953fce 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -69,8 +69,11 @@ sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None css_hide_progressbar = """
.wrap .m-12 svg { display:none!important; }
.wrap .m-12::before { content:"Loading..." }
+.wrap .z-20 svg { display:none!important; }
+.wrap .z-20::before { content:"Loading..." }
.progress-bar { display:none!important; }
.meta-text { display:none!important; }
+.meta-text-center { display:none!important; }
"""
# Using constants for these since the variation selector isn't visible.
@@ -142,7 +145,7 @@ def save_files(js_data, images, do_make_zip, index): filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
- writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
+ writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
@@ -566,6 +569,19 @@ def apply_setting(key, value): return value
+def update_generation_info(args):
+ generation_info, html_info, img_index = args
+ try:
+ generation_info = json.loads(generation_info)
+ if img_index < 0 or img_index >= len(generation_info["infotexts"]):
+ return html_info
+ return plaintext_to_html(generation_info["infotexts"][img_index])
+ except Exception:
+ pass
+ # if the json parse or anything else fails, just return the old html_info
+ return html_info
+
+
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
@@ -638,6 +654,15 @@ Requested path was: {f} with gr.Group():
html_info = gr.HTML()
generation_info = gr.Textbox(visible=False)
+ if tabname == 'txt2img' or tabname == 'img2img':
+ generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
+ generation_info_button.click(
+ fn=update_generation_info,
+ _js="(x, y) => [x, y, selected_gallery_index()]",
+ inputs=[generation_info, html_info],
+ outputs=[html_info],
+ preprocess=False
+ )
save.click(
fn=wrap_gradio_call(save_files),
@@ -670,6 +695,9 @@ def create_ui(wrap_gradio_gpu_call): parameters_copypaste.reset()
+ modules.scripts.scripts_current = modules.scripts.scripts_txt2img
+ modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
+
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
dummy_component = gr.Label(visible=False)
@@ -712,7 +740,7 @@ def create_ui(wrap_gradio_gpu_call): seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
with gr.Group():
- custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
+ custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
txt2img_gallery, generation_info, html_info = create_output_panel("txt2img", opts.outdir_txt2img_samples)
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
@@ -821,6 +849,9 @@ def create_ui(wrap_gradio_gpu_call): token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter])
+ modules.scripts.scripts_current = modules.scripts.scripts_img2img
+ modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
+
with gr.Blocks(analytics_enabled=False) as img2img_interface:
img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, token_counter, token_button = create_toprow(is_img2img=True)
@@ -891,7 +922,7 @@ def create_ui(wrap_gradio_gpu_call): seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
with gr.Group():
- custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
+ custom_inputs = modules.scripts.scripts_img2img.setup_ui()
img2img_gallery, generation_info, html_info = create_output_panel("img2img", opts.outdir_img2img_samples)
parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt)
@@ -1040,6 +1071,8 @@ def create_ui(wrap_gradio_gpu_call): parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields)
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields)
+ modules.scripts.scripts_current = None
+
with gr.Blocks(analytics_enabled=False) as extras_interface:
with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'):
@@ -1227,7 +1260,9 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="")
with gr.Column():
- run_preprocess = gr.Button(value="Preprocess", variant='primary')
+ with gr.Row():
+ interrupt_preprocessing = gr.Button("Interrupt")
+ run_preprocess = gr.Button(value="Preprocess", variant='primary')
process_split.change(
fn=lambda show: gr_show(show),
@@ -1270,6 +1305,10 @@ def create_ui(wrap_gradio_gpu_call): train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary')
train_embedding = gr.Button(value="Train Embedding", variant='primary')
+ params = script_callbacks.UiTrainTabParams(txt2img_preview_params)
+
+ script_callbacks.ui_train_tabs_callback(params)
+
with gr.Column():
progressbar = gr.HTML(elem_id="ti_progressbar")
ti_output = gr.Text(elem_id="ti_output", value="", show_label=False)
@@ -1396,6 +1435,12 @@ def create_ui(wrap_gradio_gpu_call): outputs=[],
)
+ interrupt_preprocessing.click(
+ fn=lambda: shared.state.interrupt(),
+ inputs=[],
+ outputs=[],
+ )
+
def create_setting_component(key, is_quicksettings=False):
def fun():
return opts.data[key] if key in opts.data else opts.data_labels[key].default
@@ -1447,16 +1492,9 @@ def create_ui(wrap_gradio_gpu_call): if comp == dummy_component:
continue
- oldval = opts.data.get(key, None)
- try:
- setattr(opts, key, value)
- except RuntimeError:
- continue
- if oldval != value:
- if opts.data_labels[key].onchange is not None:
- opts.data_labels[key].onchange()
-
+ if opts.set(key, value):
changed.append(key)
+
try:
opts.save(shared.config_filename)
except RuntimeError:
@@ -1467,15 +1505,8 @@ def create_ui(wrap_gradio_gpu_call): if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson()
- oldval = opts.data.get(key, None)
- try:
- setattr(opts, key, value)
- except Exception:
- return gr.update(value=oldval), opts.dumpjson()
-
- if oldval != value:
- if opts.data_labels[key].onchange is not None:
- opts.data_labels[key].onchange()
+ if not opts.set(key, value):
+ return gr.update(value=getattr(opts, key)), opts.dumpjson()
opts.save(shared.config_filename)
@@ -1752,7 +1783,7 @@ def create_ui(wrap_gradio_gpu_call): return demo
-def load_javascript(raw_response):
+def reload_javascript():
with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile:
javascript = f'<script>{jsfile.read()}</script>'
@@ -1768,7 +1799,7 @@ def load_javascript(raw_response): javascript += f"\n<script>{localization.localization_js(shared.opts.localization)}</script>"
def template_response(*args, **kwargs):
- res = raw_response(*args, **kwargs)
+ res = shared.GradioTemplateResponseOriginal(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.init_headers()
@@ -1777,4 +1808,5 @@ def load_javascript(raw_response): gradio.routes.templates.TemplateResponse = template_response
-reload_javascript = partial(load_javascript, gradio.routes.templates.TemplateResponse)
+if not hasattr(shared, 'GradioTemplateResponseOriginal'):
+ shared.GradioTemplateResponseOriginal = gradio.routes.templates.TemplateResponse
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py index 02ab9643..030f011e 100644 --- a/modules/ui_extensions.py +++ b/modules/ui_extensions.py @@ -36,9 +36,9 @@ def apply_and_restart(disable_list, update_list): continue
try:
- ext.pull()
+ ext.fetch_and_reset_hard()
except Exception:
- print(f"Error pulling updates for {ext.name}:", file=sys.stderr)
+ print(f"Error getting updates for {ext.name}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
shared.opts.disabled_extensions = disabled
@@ -134,6 +134,9 @@ def install_extension_from_url(dirname, url): os.rename(tmpdir, target_dir)
+ import launch
+ launch.run_extension_installer(target_dir)
+
extensions.list_extensions()
return [extension_table(), html.escape(f"Installed into {target_dir}. Use Installed tab to restart.")]
finally:
|