diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-05-14 08:46:27 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-05-14 08:46:27 +0000 |
commit | 80adb6979d46bbb832254004cac4f4f9bec9efb3 (patch) | |
tree | e206ee60f9be21e9e20d483213b7d0a610d2bdbd /modules | |
parent | 1dcd6723242c3d691610f9ed937951baea49c2d1 (diff) | |
parent | 3ddc76342298ad0b2d14cb571ceb48c0b0c4176d (diff) | |
download | stable-diffusion-webui-gfx803-80adb6979d46bbb832254004cac4f4f9bec9efb3.tar.gz stable-diffusion-webui-gfx803-80adb6979d46bbb832254004cac4f4f9bec9efb3.tar.bz2 stable-diffusion-webui-gfx803-80adb6979d46bbb832254004cac4f4f9bec9efb3.zip |
Merge branch 'dev' into find_vae
Diffstat (limited to 'modules')
79 files changed, 1314 insertions, 965 deletions
diff --git a/modules/Roboto-Regular.ttf b/modules/Roboto-Regular.ttf Binary files differnew file mode 100644 index 00000000..500b1045 --- /dev/null +++ b/modules/Roboto-Regular.ttf diff --git a/modules/api/api.py b/modules/api/api.py index cdbdce32..165985c3 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -15,7 +15,8 @@ from secrets import compare_digest import modules.shared as shared from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing -from modules.api.models import * +from modules.api import models +from modules.shared import opts from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.textual_inversion.textual_inversion import create_embedding, train_embedding from modules.textual_inversion.preprocess import preprocess @@ -25,21 +26,24 @@ from modules.sd_models import checkpoints_list, unload_model_weights, reload_mod from modules.sd_models_config import find_checkpoint_config_near_filename from modules.realesrgan_model import get_realesrgan_models from modules import devices -from typing import List +from typing import Dict, List, Any import piexif import piexif.helper + def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) - except: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}") + except Exception as e: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e + def script_name_to_index(name, scripts): try: return [script.title().lower() for script in scripts].index(name.lower()) - except: - raise HTTPException(status_code=422, detail=f"Script '{name}' not found") + except Exception as e: + raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e + def validate_sampler_name(name): config = sd_samplers.all_samplers_map.get(name, None) @@ -48,20 +52,23 @@ def validate_sampler_name(name): return name + def setUpscalers(req: dict): reqDict = vars(req) reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None) reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None) return reqDict + def decode_base64_to_image(encoding): if encoding.startswith("data:image/"): encoding = encoding.split(";")[1].split(",")[1] try: image = Image.open(BytesIO(base64.b64decode(encoding))) return image - except Exception as err: - raise HTTPException(status_code=500, detail="Invalid encoded image") + except Exception as e: + raise HTTPException(status_code=500, detail="Invalid encoded image") from e + def encode_pil_to_base64(image): with io.BytesIO() as output_bytes: @@ -92,6 +99,7 @@ def encode_pil_to_base64(image): return base64.b64encode(bytes_data) + def api_middleware(app: FastAPI): rich_available = True try: @@ -99,7 +107,7 @@ def api_middleware(app: FastAPI): import starlette # importing just so it can be placed on silent list from rich.console import Console console = Console() - except: + except Exception: import traceback rich_available = False @@ -157,7 +165,7 @@ def api_middleware(app: FastAPI): class Api: def __init__(self, app: FastAPI, queue_lock: Lock): if shared.cmd_opts.api_auth: - self.credentials = dict() + self.credentials = {} for auth in shared.cmd_opts.api_auth.split(","): user, password = auth.split(":") self.credentials[user] = password @@ -166,36 +174,36 @@ class Api: self.app = app self.queue_lock = queue_lock api_middleware(self.app) - self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) - self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) - self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) - self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) - self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) - self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) + self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse) + self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse) + self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse) + self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse) + self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse) + self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse) self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"]) self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"]) - self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel) + self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel) self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) - self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel) - self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem]) - self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem]) - self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem]) - self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem]) - self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem]) - self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem]) - self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem]) - self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse) + self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel) + self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem]) + self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem]) + self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem]) + self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem]) + self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem]) + self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem]) + self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem]) + self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse) self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"]) - self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse) - self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse) - self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse) - self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse) - self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse) - self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse) + self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse) + self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse) + self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse) + self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse) + self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse) + self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse) self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"]) self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"]) - self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList) + self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList) self.default_script_arg_txt2img = [] self.default_script_arg_img2img = [] @@ -219,17 +227,17 @@ class Api: script_idx = script_name_to_index(script_name, script_runner.selectable_scripts) script = script_runner.selectable_scripts[script_idx] return script, script_idx - + def get_scripts_list(self): t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles] i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles] - return ScriptsList(txt2img = t2ilist, img2img = i2ilist) + return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist) def get_script(self, script_name, script_runner): if script_name is None or script_name == "": return None, None - + script_idx = script_name_to_index(script_name, script_runner.scripts) return script_runner.scripts[script_idx] @@ -264,11 +272,11 @@ class Api: if request.alwayson_scripts and (len(request.alwayson_scripts) > 0): for alwayson_script_name in request.alwayson_scripts.keys(): alwayson_script = self.get_script(alwayson_script_name, script_runner) - if alwayson_script == None: + if alwayson_script is None: raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found") # Selectable script in always on script param check - if alwayson_script.alwayson == False: - raise HTTPException(status_code=422, detail=f"Cannot have a selectable script in the always on scripts params") + if alwayson_script.alwayson is False: + raise HTTPException(status_code=422, detail="Cannot have a selectable script in the always on scripts params") # always on script with no arg should always run so you don't really need to add them to the requests if "args" in request.alwayson_scripts[alwayson_script_name]: # min between arg length in scriptrunner and arg length in the request @@ -276,7 +284,7 @@ class Api: script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx] return script_args - def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): + def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI): script_runner = scripts.scripts_txt2img if not script_runner.scripts: script_runner.initialize_scripts(False) @@ -310,7 +318,7 @@ class Api: p.outpath_samples = opts.outdir_txt2img_samples shared.state.begin() - if selectable_scripts != None: + if selectable_scripts is not None: p.script_args = script_args processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here else: @@ -320,9 +328,9 @@ class Api: b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] - return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) + return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) - def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): + def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI): init_images = img2imgreq.init_images if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") @@ -367,7 +375,7 @@ class Api: p.outpath_samples = opts.outdir_img2img_samples shared.state.begin() - if selectable_scripts != None: + if selectable_scripts is not None: p.script_args = script_args processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here else: @@ -381,9 +389,9 @@ class Api: img2imgreq.init_images = None img2imgreq.mask = None - return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) + return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) - def extras_single_image_api(self, req: ExtrasSingleImageRequest): + def extras_single_image_api(self, req: models.ExtrasSingleImageRequest): reqDict = setUpscalers(req) reqDict['image'] = decode_base64_to_image(reqDict['image']) @@ -391,9 +399,9 @@ class Api: with self.queue_lock: result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict) - return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) + return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) - def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): + def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest): reqDict = setUpscalers(req) image_list = reqDict.pop('imageList', []) @@ -402,15 +410,15 @@ class Api: with self.queue_lock: result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict) - return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) + return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) - def pnginfoapi(self, req: PNGInfoRequest): + def pnginfoapi(self, req: models.PNGInfoRequest): if(not req.image.strip()): - return PNGInfoResponse(info="") + return models.PNGInfoResponse(info="") image = decode_base64_to_image(req.image.strip()) if image is None: - return PNGInfoResponse(info="") + return models.PNGInfoResponse(info="") geninfo, items = images.read_info_from_image(image) if geninfo is None: @@ -418,13 +426,13 @@ class Api: items = {**{'parameters': geninfo}, **items} - return PNGInfoResponse(info=geninfo, items=items) + return models.PNGInfoResponse(info=geninfo, items=items) - def progressapi(self, req: ProgressRequest = Depends()): + def progressapi(self, req: models.ProgressRequest = Depends()): # copy from check_progress_call of ui.py if shared.state.job_count == 0: - return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) + return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) # avoid dividing zero progress = 0.01 @@ -446,9 +454,9 @@ class Api: if shared.state.current_image and not req.skip_current_image: current_image = encode_pil_to_base64(shared.state.current_image) - return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) + return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) - def interrogateapi(self, interrogatereq: InterrogateRequest): + def interrogateapi(self, interrogatereq: models.InterrogateRequest): image_b64 = interrogatereq.image if image_b64 is None: raise HTTPException(status_code=404, detail="Image not found") @@ -465,7 +473,7 @@ class Api: else: raise HTTPException(status_code=404, detail="Model not found") - return InterrogateResponse(caption=processed) + return models.InterrogateResponse(caption=processed) def interruptapi(self): shared.state.interrupt() @@ -570,36 +578,36 @@ class Api: filename = create_embedding(**args) # create empty embedding sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used shared.state.end() - return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename)) + return models.CreateResponse(info=f"create embedding filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info = "create embedding error: {error}".format(error = e)) + return models.TrainResponse(info=f"create embedding error: {e}") def create_hypernetwork(self, args: dict): try: shared.state.begin() filename = create_hypernetwork(**args) # create empty embedding shared.state.end() - return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename)) + return models.CreateResponse(info=f"create hypernetwork filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info = "create hypernetwork error: {error}".format(error = e)) + return models.TrainResponse(info=f"create hypernetwork error: {e}") def preprocess(self, args: dict): try: shared.state.begin() preprocess(**args) # quick operation unless blip/booru interrogation is enabled shared.state.end() - return PreprocessResponse(info = 'preprocess complete') + return models.PreprocessResponse(info = 'preprocess complete') except KeyError as e: shared.state.end() - return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e)) + return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}") except AssertionError as e: shared.state.end() - return PreprocessResponse(info = "preprocess error: {error}".format(error = e)) + return models.PreprocessResponse(info=f"preprocess error: {e}") except FileNotFoundError as e: shared.state.end() - return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e)) + return models.PreprocessResponse(info=f'preprocess error: {e}') def train_embedding(self, args: dict): try: @@ -617,10 +625,10 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error)) + return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") except AssertionError as msg: shared.state.end() - return TrainResponse(info = "train embedding error: {msg}".format(msg = msg)) + return models.TrainResponse(info=f"train embedding error: {msg}") def train_hypernetwork(self, args: dict): try: @@ -641,14 +649,15 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info="train embedding complete: filename: {filename} error: {error}".format(filename=filename, error=error)) - except AssertionError as msg: + return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") + except AssertionError: shared.state.end() - return TrainResponse(info="train embedding error: {error}".format(error=error)) + return models.TrainResponse(info=f"train embedding error: {error}") def get_memory(self): try: - import os, psutil + import os + import psutil process = psutil.Process(os.getpid()) res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe @@ -675,10 +684,10 @@ class Api: 'events': warnings, } else: - cuda = { 'error': 'unavailable' } + cuda = {'error': 'unavailable'} except Exception as err: - cuda = { 'error': f'{err}' } - return MemoryResponse(ram = ram, cuda = cuda) + cuda = {'error': f'{err}'} + return models.MemoryResponse(ram=ram, cuda=cuda) def launch(self, server_name, port): self.app.include_router(self.router) diff --git a/modules/api/models.py b/modules/api/models.py index 4a70f440..006ccdb7 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -223,8 +223,9 @@ for key in _options: if(_options[key].dest != 'help'): flag = _options[key] _type = str - if _options[key].default is not None: _type = type(_options[key].default) - flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))}) + if _options[key].default is not None: + _type = type(_options[key].default) + flags.update({flag.dest: (_type, Field(default=flag.default, description=flag.help))}) FlagsModel = create_model("Flags", **flags) @@ -288,4 +289,4 @@ class MemoryResponse(BaseModel): class ScriptsList(BaseModel): txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)") - img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)")
\ No newline at end of file + img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)") diff --git a/modules/call_queue.py b/modules/call_queue.py index 1829f3a6..447bb764 100644 --- a/modules/call_queue.py +++ b/modules/call_queue.py @@ -60,7 +60,7 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False): max_debug_str_len = 131072 # (1024*1024)/8
print("Error completing request", file=sys.stderr)
- argStr = f"Arguments: {str(args)} {str(kwargs)}"
+ argStr = f"Arguments: {args} {kwargs}"
print(argStr[:max_debug_str_len], file=sys.stderr)
if len(argStr) > max_debug_str_len:
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
@@ -73,7 +73,8 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False): if extra_outputs_array is None:
extra_outputs_array = [None, '']
- res = extra_outputs_array + [f"<div class='error'>{html.escape(type(e).__name__+': '+str(e))}</div>"]
+ error_message = f'{type(e).__name__}: {e}'
+ res = extra_outputs_array + [f"<div class='error'>{html.escape(error_message)}</div>"]
shared.state.skipped = False
shared.state.interrupted = False
diff --git a/modules/cmd_args.py b/modules/cmd_args.py index f47c21bb..f4a4ab36 100644 --- a/modules/cmd_args.py +++ b/modules/cmd_args.py @@ -1,6 +1,6 @@ import argparse
import os
-from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir, sd_default_config, sd_model_file
+from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir, sd_default_config, sd_model_file # noqa: F401
parser = argparse.ArgumentParser()
@@ -102,3 +102,4 @@ parser.add_argument("--no-gradio-queue", action='store_true', help="Disables gra parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers")
parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False)
parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False)
+parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy')
diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index 11dcc3ee..12db6814 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -1,14 +1,12 @@ # this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py import math -import numpy as np import torch from torch import nn, Tensor import torch.nn.functional as F -from typing import Optional, List +from typing import Optional -from modules.codeformer.vqgan_arch import * -from basicsr.utils import get_root_logger +from modules.codeformer.vqgan_arch import VQAutoEncoder, ResBlock from basicsr.utils.registry import ARCH_REGISTRY def calc_mean_std(feat, eps=1e-5): @@ -121,7 +119,7 @@ class TransformerSALayer(nn.Module): tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): - + # self attention tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) @@ -161,10 +159,10 @@ class Fuse_sft_block(nn.Module): @ARCH_REGISTRY.register() class CodeFormer(VQAutoEncoder): - def __init__(self, dim_embd=512, n_head=8, n_layers=9, + def __init__(self, dim_embd=512, n_head=8, n_layers=9, codebook_size=1024, latent_size=256, - connect_list=['32', '64', '128', '256'], - fix_modules=['quantize','generator']): + connect_list=('32', '64', '128', '256'), + fix_modules=('quantize', 'generator')): super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) if fix_modules is not None: @@ -181,14 +179,14 @@ class CodeFormer(VQAutoEncoder): self.feat_emb = nn.Linear(256, self.dim_embd) # transformer - self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) + self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) for _ in range(self.n_layers)]) # logits_predict head self.idx_pred_layer = nn.Sequential( nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)) - + self.channels = { '16': 512, '32': 256, @@ -223,7 +221,7 @@ class CodeFormer(VQAutoEncoder): enc_feat_dict = {} out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.encoder.blocks): - x = block(x) + x = block(x) if i in out_list: enc_feat_dict[str(x.shape[-1])] = x.clone() @@ -268,11 +266,11 @@ class CodeFormer(VQAutoEncoder): fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.generator.blocks): - x = block(x) + x = block(x) if i in fuse_list: # fuse after i-th block f_size = str(x.shape[-1]) if w>0: x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) out = x # logits doesn't need softmax before cross_entropy loss - return out, logits, lq_feat
\ No newline at end of file + return out, logits, lq_feat diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index e7293683..09ee6660 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -5,17 +5,15 @@ VQGAN code, adapted from the original created by the Unleashing Transformers aut https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py ''' -import numpy as np import torch import torch.nn as nn import torch.nn.functional as F -import copy from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY def normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - + @torch.jit.script def swish(x): @@ -212,15 +210,15 @@ class AttnBlock(nn.Module): # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h*w) - q = q.permute(0, 2, 1) + q = q.permute(0, 2, 1) k = k.reshape(b, c, h*w) - w_ = torch.bmm(q, k) + w_ = torch.bmm(q, k) w_ = w_ * (int(c)**(-0.5)) w_ = F.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h*w) - w_ = w_.permute(0, 2, 1) + w_ = w_.permute(0, 2, 1) h_ = torch.bmm(v, w_) h_ = h_.reshape(b, c, h, w) @@ -272,18 +270,18 @@ class Encoder(nn.Module): def forward(self, x): for block in self.blocks: x = block(x) - + return x class Generator(nn.Module): def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions): super().__init__() - self.nf = nf - self.ch_mult = ch_mult + self.nf = nf + self.ch_mult = ch_mult self.num_resolutions = len(self.ch_mult) self.num_res_blocks = res_blocks - self.resolution = img_size + self.resolution = img_size self.attn_resolutions = attn_resolutions self.in_channels = emb_dim self.out_channels = 3 @@ -317,29 +315,29 @@ class Generator(nn.Module): blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)) self.blocks = nn.ModuleList(blocks) - + def forward(self, x): for block in self.blocks: x = block(x) - + return x - + @ARCH_REGISTRY.register() class VQAutoEncoder(nn.Module): - def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, + def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256, beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): super().__init__() logger = get_root_logger() - self.in_channels = 3 - self.nf = nf - self.n_blocks = res_blocks + self.in_channels = 3 + self.nf = nf + self.n_blocks = res_blocks self.codebook_size = codebook_size self.embed_dim = emb_dim self.ch_mult = ch_mult self.resolution = img_size - self.attn_resolutions = attn_resolutions + self.attn_resolutions = attn_resolutions or [16] self.quantizer_type = quantizer self.encoder = Encoder( self.in_channels, @@ -365,11 +363,11 @@ class VQAutoEncoder(nn.Module): self.kl_weight ) self.generator = Generator( - self.nf, + self.nf, self.embed_dim, - self.ch_mult, - self.n_blocks, - self.resolution, + self.ch_mult, + self.n_blocks, + self.resolution, self.attn_resolutions ) @@ -434,4 +432,4 @@ class VQGANDiscriminator(nn.Module): raise ValueError('Wrong params!') def forward(self, x): - return self.main(x)
\ No newline at end of file + return self.main(x) diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 8d84bbc9..ececdbae 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -33,11 +33,9 @@ def setup_model(dirname): try:
from torchvision.transforms.functional import normalize
from modules.codeformer.codeformer_arch import CodeFormer
- from basicsr.utils.download_util import load_file_from_url
- from basicsr.utils import imwrite, img2tensor, tensor2img
+ from basicsr.utils import img2tensor, tensor2img
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.detection.retinaface import retinaface
- from modules.shared import cmd_opts
net_class = CodeFormer
@@ -96,7 +94,7 @@ def setup_model(dirname): self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
self.face_helper.align_warp_face()
- for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
+ for cropped_face in self.face_helper.cropped_faces:
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
diff --git a/modules/config_states.py b/modules/config_states.py index 2ea00929..75da862a 100644 --- a/modules/config_states.py +++ b/modules/config_states.py @@ -14,7 +14,7 @@ from collections import OrderedDict import git from modules import shared, extensions -from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path, config_states_dir +from modules.paths_internal import script_path, config_states_dir all_config_states = OrderedDict() @@ -35,7 +35,7 @@ def list_config_states(): j["filepath"] = path config_states.append(j) - config_states = list(sorted(config_states, key=lambda cs: cs["created_at"], reverse=True)) + config_states = sorted(config_states, key=lambda cs: cs["created_at"], reverse=True) for cs in config_states: timestamp = time.asctime(time.gmtime(cs["created_at"])) diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 122fce7f..547e1b4c 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -2,7 +2,6 @@ import os import re import torch -from PIL import Image import numpy as np from modules import modelloader, paths, deepbooru_model, devices, images, shared @@ -79,7 +78,7 @@ class DeepDanbooru: res = [] - filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")]) + filtertags = {x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")} for tag in [x for x in tags if x not in filtertags]: probability = probability_dict[tag] diff --git a/modules/devices.py b/modules/devices.py index c705a3cb..d8a34a0f 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -65,7 +65,7 @@ def enable_tf32(): # enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't # see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407 - if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]): + if any(torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())): torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index 9a9c38f1..a009eb42 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -6,7 +6,7 @@ from PIL import Image from basicsr.utils.download_util import load_file_from_url
import modules.esrgan_model_arch as arch
-from modules import shared, modelloader, images, devices
+from modules import modelloader, images, devices
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import opts
@@ -16,9 +16,7 @@ def mod2normal(state_dict): # this code is copied from https://github.com/victorca25/iNNfer
if 'conv_first.weight' in state_dict:
crt_net = {}
- items = []
- for k, v in state_dict.items():
- items.append(k)
+ items = list(state_dict)
crt_net['model.0.weight'] = state_dict['conv_first.weight']
crt_net['model.0.bias'] = state_dict['conv_first.bias']
@@ -52,9 +50,7 @@ def resrgan2normal(state_dict, nb=23): if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
re8x = 0
crt_net = {}
- items = []
- for k, v in state_dict.items():
- items.append(k)
+ items = list(state_dict)
crt_net['model.0.weight'] = state_dict['conv_first.weight']
crt_net['model.0.bias'] = state_dict['conv_first.bias']
@@ -156,13 +152,16 @@ class UpscalerESRGAN(Upscaler): def load_model(self, path: str):
if "http" in path:
- filename = load_file_from_url(url=self.model_url, model_dir=self.model_path,
- file_name="%s.pth" % self.model_name,
- progress=True)
+ filename = load_file_from_url(
+ url=self.model_url,
+ model_dir=self.model_path,
+ file_name=f"{self.model_name}.pth",
+ progress=True,
+ )
else:
filename = path
if not os.path.exists(filename) or filename is None:
- print("Unable to load %s from %s" % (self.model_path, filename))
+ print(f"Unable to load {self.model_path} from {filename}")
return None
state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py index 1b52b0f5..2b9888ba 100644 --- a/modules/esrgan_model_arch.py +++ b/modules/esrgan_model_arch.py @@ -2,7 +2,6 @@ from collections import OrderedDict
import math
-import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
@@ -38,7 +37,7 @@ class RRDBNet(nn.Module): elif upsample_mode == 'pixelshuffle':
upsample_block = pixelshuffle_block
else:
- raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode))
+ raise NotImplementedError(f'upsample mode [{upsample_mode}] is not found')
if upscale == 3:
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
else:
@@ -106,7 +105,7 @@ class ResidualDenseBlock_5C(nn.Module): Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
+ - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
"""
@@ -171,7 +170,7 @@ class GaussianNoise(nn.Module): scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
x = x + sampled_noise
- return x
+ return x
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
@@ -261,10 +260,10 @@ class Upsample(nn.Module): def extra_repr(self):
if self.scale_factor is not None:
- info = 'scale_factor=' + str(self.scale_factor)
+ info = f'scale_factor={self.scale_factor}'
else:
- info = 'size=' + str(self.size)
- info += ', mode=' + self.mode
+ info = f'size={self.size}'
+ info += f', mode={self.mode}'
return info
@@ -350,7 +349,7 @@ def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0): elif act_type == 'sigmoid': # [0, 1] range output
layer = nn.Sigmoid()
else:
- raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type))
+ raise NotImplementedError(f'activation layer [{act_type}] is not found')
return layer
@@ -372,7 +371,7 @@ def norm(norm_type, nc): elif norm_type == 'none':
def norm_layer(x): return Identity()
else:
- raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type))
+ raise NotImplementedError(f'normalization layer [{norm_type}] is not found')
return layer
@@ -388,7 +387,7 @@ def pad(pad_type, padding): elif pad_type == 'zero':
layer = nn.ZeroPad2d(padding)
else:
- raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type))
+ raise NotImplementedError(f'padding layer [{pad_type}] is not implemented')
return layer
@@ -432,15 +431,17 @@ def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias= pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D',
spectral_norm=False):
""" Conv layer with padding, normalization, activation """
- assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode)
+ assert mode in ['CNA', 'NAC', 'CNAC'], f'Wrong conv mode [{mode}]'
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
padding = padding if pad_type == 'zero' else 0
if convtype=='PartialConv2D':
+ from torchvision.ops import PartialConv2d # this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer
c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, bias=bias, groups=groups)
elif convtype=='DeformConv2D':
+ from torchvision.ops import DeformConv2d # not tested
c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, bias=bias, groups=groups)
elif convtype=='Conv3D':
diff --git a/modules/extensions.py b/modules/extensions.py index 34d9d654..bc2c0450 100644 --- a/modules/extensions.py +++ b/modules/extensions.py @@ -3,11 +3,10 @@ import sys import traceback
import time
-from datetime import datetime
import git
from modules import shared
-from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path
+from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401
extensions = []
diff --git a/modules/extra_networks.py b/modules/extra_networks.py index 1978673d..f9db41bc 100644 --- a/modules/extra_networks.py +++ b/modules/extra_networks.py @@ -91,7 +91,7 @@ def deactivate(p, extra_network_data): """call deactivate for extra networks in extra_network_data in specified order, then call
deactivate for all remaining registered networks"""
- for extra_network_name, extra_network_args in extra_network_data.items():
+ for extra_network_name in extra_network_data:
extra_network = extra_network_registry.get(extra_network_name, None)
if extra_network is None:
continue
diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py index 33d100dd..aa2a14ef 100644 --- a/modules/extra_networks_hypernet.py +++ b/modules/extra_networks_hypernet.py @@ -1,4 +1,4 @@ -from modules import extra_networks, shared, extra_networks
+from modules import extra_networks, shared
from modules.hypernetworks import hypernetwork
@@ -10,7 +10,8 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork): additional = shared.opts.sd_hypernetwork
if additional != "None" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
- p.all_prompts = [x + f"<hypernet:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
+ hypernet_prompt_text = f"<hypernet:{additional}:{shared.opts.extra_networks_default_multiplier}>"
+ p.all_prompts = [f"{prompt}{hypernet_prompt_text}" for prompt in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = []
diff --git a/modules/extras.py b/modules/extras.py index ff4e9c4e..bdf9b3b7 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -136,14 +136,14 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_ result_is_instruct_pix2pix_model = False
if theta_func2:
- shared.state.textinfo = f"Loading B"
+ shared.state.textinfo = "Loading B"
print(f"Loading {secondary_model_info.filename}...")
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
else:
theta_1 = None
if theta_func1:
- shared.state.textinfo = f"Loading C"
+ shared.state.textinfo = "Loading C"
print(f"Loading {tertiary_model_info.filename}...")
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
@@ -199,7 +199,7 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_ result_is_inpainting_model = True
else:
theta_0[key] = theta_func2(a, b, multiplier)
-
+
theta_0[key] = to_half(theta_0[key], save_as_half)
shared.state.sampling_step += 1
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 99f1a0d3..f1a2204c 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -1,15 +1,11 @@ import base64
-import html
import io
-import math
import os
import re
-from pathlib import Path
import gradio as gr
from modules.paths import data_path
from modules import shared, ui_tempdir, script_callbacks
-import tempfile
from PIL import Image
re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)'
@@ -23,14 +19,14 @@ registered_param_bindings = [] class ParamBinding:
- def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=[]):
+ def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=None):
self.paste_button = paste_button
self.tabname = tabname
self.source_text_component = source_text_component
self.source_image_component = source_image_component
self.source_tabname = source_tabname
self.override_settings_component = override_settings_component
- self.paste_field_names = paste_field_names
+ self.paste_field_names = paste_field_names or []
def reset():
@@ -59,6 +55,7 @@ def image_from_url_text(filedata): is_in_right_dir = ui_tempdir.check_tmp_file(shared.demo, filename)
assert is_in_right_dir, 'trying to open image file outside of allowed directories'
+ filename = filename.rsplit('?', 1)[0]
return Image.open(filename)
if type(filedata) == list:
@@ -129,6 +126,7 @@ def connect_paste_params_buttons(): _js=jsfunc,
inputs=[binding.source_image_component],
outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
+ show_progress=False,
)
if binding.source_text_component is not None and fields is not None:
@@ -140,6 +138,7 @@ def connect_paste_params_buttons(): fn=lambda *x: x,
inputs=[field for field, name in paste_fields[binding.source_tabname]["fields"] if name in paste_field_names],
outputs=[field for field, name in fields if name in paste_field_names],
+ show_progress=False,
)
binding.paste_button.click(
@@ -147,6 +146,7 @@ def connect_paste_params_buttons(): _js=f"switch_to_{binding.tabname}",
inputs=None,
outputs=None,
+ show_progress=False,
)
@@ -247,7 +247,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model lines.append(lastline)
lastline = ''
- for i, line in enumerate(lines):
+ for line in lines:
line = line.strip()
if line.startswith("Negative prompt:"):
done_with_prompt = True
@@ -265,8 +265,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model v = v[1:-1] if v[0] == '"' and v[-1] == '"' else v
m = re_imagesize.match(v)
if m is not None:
- res[k+"-1"] = m.group(1)
- res[k+"-2"] = m.group(2)
+ res[f"{k}-1"] = m.group(1)
+ res[f"{k}-2"] = m.group(2)
else:
res[k] = v
@@ -308,6 +308,8 @@ infotext_to_setting_name_mapping = [ ('UniPC skip type', 'uni_pc_skip_type'),
('UniPC order', 'uni_pc_order'),
('UniPC lower order final', 'uni_pc_lower_order_final'),
+ ('Token merging ratio', 'token_merging_ratio'),
+ ('Token merging ratio hr', 'token_merging_ratio_hr'),
('RNG', 'randn_source'),
('NGMS', 's_min_uncond'),
]
@@ -409,12 +411,14 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component, fn=paste_func,
inputs=[input_comp],
outputs=[x[0] for x in paste_fields],
+ show_progress=False,
)
button.click(
fn=None,
_js=f"recalculate_prompts_{tabname}",
inputs=[],
outputs=[],
+ show_progress=False,
)
diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py index fbe6215a..0131dea4 100644 --- a/modules/gfpgan_model.py +++ b/modules/gfpgan_model.py @@ -78,7 +78,7 @@ def setup_model(dirname): try:
from gfpgan import GFPGANer
- from facexlib import detection, parsing
+ from facexlib import detection, parsing # noqa: F401
global user_path
global have_gfpgan
global gfpgan_constructor
diff --git a/modules/hashes.py b/modules/hashes.py index 83272a07..032120f4 100644 --- a/modules/hashes.py +++ b/modules/hashes.py @@ -13,7 +13,7 @@ cache_data = None def dump_cache():
- with filelock.FileLock(cache_filename+".lock"):
+ with filelock.FileLock(f"{cache_filename}.lock"):
with open(cache_filename, "w", encoding="utf8") as file:
json.dump(cache_data, file, indent=4)
@@ -22,7 +22,7 @@ def cache(subsection): global cache_data
if cache_data is None:
- with filelock.FileLock(cache_filename+".lock"):
+ with filelock.FileLock(f"{cache_filename}.lock"):
if not os.path.isfile(cache_filename):
cache_data = {}
else:
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 1fc49537..570b5603 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -1,4 +1,3 @@ -import csv
import datetime
import glob
import html
@@ -18,7 +17,7 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
-from collections import defaultdict, deque
+from collections import deque
from statistics import stdev, mean
@@ -178,34 +177,34 @@ class Hypernetwork: def weights(self):
res = []
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
res += layer.parameters()
return res
def train(self, mode=True):
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
layer.train(mode=mode)
for param in layer.parameters():
param.requires_grad = mode
def to(self, device):
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
layer.to(device)
return self
def set_multiplier(self, multiplier):
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
layer.multiplier = multiplier
return self
def eval(self):
- for k, layers in self.layers.items():
+ for layers in self.layers.values():
for layer in layers:
layer.eval()
for param in layer.parameters():
@@ -404,7 +403,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): k = self.to_k(context_k)
v = self.to_v(context_v)
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+ q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
@@ -541,7 +540,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
-
+
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
if clip_grad:
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
@@ -594,7 +593,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi print(e)
scaler = torch.cuda.amp.GradScaler()
-
+
batch_size = ds.batch_size
gradient_step = ds.gradient_step
# n steps = batch_size * gradient_step * n image processed
@@ -620,7 +619,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi try:
sd_hijack_checkpoint.add()
- for i in range((steps-initial_step) * gradient_step):
+ for _ in range((steps-initial_step) * gradient_step):
if scheduler.finished:
break
if shared.state.interrupted:
@@ -637,7 +636,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi if clip_grad:
clip_grad_sched.step(hypernetwork.step)
-
+
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if use_weight:
@@ -658,14 +657,14 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi _loss_step += loss.item()
scaler.scale(loss).backward()
-
+
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
loss_logging.append(_loss_step)
if clip_grad:
clip_grad(weights, clip_grad_sched.learn_rate)
-
+
scaler.step(optimizer)
scaler.update()
hypernetwork.step += 1
@@ -675,7 +674,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi _loss_step = 0
steps_done = hypernetwork.step + 1
-
+
epoch_num = hypernetwork.step // steps_per_epoch
epoch_step = hypernetwork.step % steps_per_epoch
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 76599f5a..8b6255e2 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -1,19 +1,17 @@ import html
-import os
-import re
import gradio as gr
import modules.hypernetworks.hypernetwork
from modules import devices, sd_hijack, shared
not_available = ["hardswish", "multiheadattention"]
-keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
+keys = [x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict if x not in not_available]
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure)
- return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""
+ return gr.Dropdown.update(choices=sorted(shared.hypernetworks)), f"Created: {filename}", ""
def train_hypernetwork(*args):
diff --git a/modules/images.py b/modules/images.py index fd173829..b2de3662 100644 --- a/modules/images.py +++ b/modules/images.py @@ -13,17 +13,24 @@ import numpy as np import piexif
import piexif.helper
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
-from fonts.ttf import Roboto
import string
import json
import hashlib
from modules import sd_samplers, shared, script_callbacks, errors
-from modules.shared import opts, cmd_opts
+from modules.paths_internal import roboto_ttf_file
+from modules.shared import opts
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
+def get_font(fontsize: int):
+ try:
+ return ImageFont.truetype(opts.font or roboto_ttf_file, fontsize)
+ except Exception:
+ return ImageFont.truetype(roboto_ttf_file, fontsize)
+
+
def image_grid(imgs, batch_size=1, rows=None):
if rows is None:
if opts.n_rows > 0:
@@ -142,14 +149,8 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): lines.append(word)
return lines
- def get_font(fontsize):
- try:
- return ImageFont.truetype(opts.font or Roboto, fontsize)
- except Exception:
- return ImageFont.truetype(Roboto, fontsize)
-
def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize):
- for i, line in enumerate(lines):
+ for line in lines:
fnt = initial_fnt
fontsize = initial_fontsize
while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0:
@@ -357,6 +358,7 @@ class FilenameGenerator: 'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.n_iter == 1 and self.p.batch_size == 1 else self.p.iteration * self.p.batch_size + self.p.batch_index + 1,
'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
+ 'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT,
}
default_time_format = '%Y%m%d%H%M%S'
@@ -365,7 +367,7 @@ class FilenameGenerator: self.seed = seed
self.prompt = prompt
self.image = image
-
+
def hasprompt(self, *args):
lower = self.prompt.lower()
if self.p is None or self.prompt is None:
@@ -408,13 +410,13 @@ class FilenameGenerator: time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format
try:
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
- except pytz.exceptions.UnknownTimeZoneError as _:
+ except pytz.exceptions.UnknownTimeZoneError:
time_zone = None
time_zone_time = time_datetime.astimezone(time_zone)
try:
formatted_time = time_zone_time.strftime(time_format)
- except (ValueError, TypeError) as _:
+ except (ValueError, TypeError):
formatted_time = time_zone_time.strftime(self.default_time_format)
return sanitize_filename_part(formatted_time, replace_spaces=False)
@@ -466,14 +468,14 @@ def get_next_sequence_number(path, basename): """
result = -1
if basename != '':
- basename = basename + "-"
+ basename = f"{basename}-"
prefix_length = len(basename)
for p in os.listdir(path):
if p.startswith(basename):
- l = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element)
+ parts = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element)
try:
- result = max(int(l[0]), result)
+ result = max(int(parts[0]), result)
except ValueError:
pass
@@ -535,7 +537,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i add_number = opts.save_images_add_number or file_decoration == ''
if file_decoration != "" and add_number:
- file_decoration = "-" + file_decoration
+ file_decoration = f"-{file_decoration}"
file_decoration = namegen.apply(file_decoration) + suffix
@@ -565,7 +567,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i def _atomically_save_image(image_to_save, filename_without_extension, extension):
# save image with .tmp extension to avoid race condition when another process detects new image in the directory
- temp_file_path = filename_without_extension + ".tmp"
+ temp_file_path = f"{filename_without_extension}.tmp"
image_format = Image.registered_extensions()[extension]
if extension.lower() == '.png':
@@ -625,7 +627,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i if opts.save_txt and info is not None:
txt_fullfn = f"{fullfn_without_extension}.txt"
with open(txt_fullfn, "w", encoding="utf8") as file:
- file.write(info + "\n")
+ file.write(f"{info}\n")
else:
txt_fullfn = None
diff --git a/modules/img2img.py b/modules/img2img.py index 56c846d6..d704bf90 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -1,19 +1,15 @@ -import math
import os
-import sys
-import traceback
import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
-from modules import devices, sd_samplers
+from modules import sd_samplers
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
-import modules.images as images
import modules.scripts
@@ -48,7 +44,8 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): try:
img = Image.open(image)
- except UnidentifiedImageError:
+ except UnidentifiedImageError as e:
+ print(e)
continue
# Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img)
@@ -58,7 +55,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): # try to find corresponding mask for an image using simple filename matching
mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image))
# if not found use first one ("same mask for all images" use-case)
- if not mask_image_path in inpaint_masks:
+ if mask_image_path not in inpaint_masks:
mask_image_path = inpaint_masks[0]
mask_image = Image.open(mask_image_path)
p.image_mask = mask_image
diff --git a/modules/interrogate.py b/modules/interrogate.py index e1665708..111b1322 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -11,7 +11,6 @@ import torch.hub from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
-import modules.shared as shared
from modules import devices, paths, shared, lowvram, modelloader, errors
blip_image_eval_size = 384
@@ -28,7 +27,7 @@ def category_types(): def download_default_clip_interrogate_categories(content_dir):
print("Downloading CLIP categories...")
- tmpdir = content_dir + "_tmp"
+ tmpdir = f"{content_dir}_tmp"
category_types = ["artists", "flavors", "mediums", "movements"]
try:
@@ -160,7 +159,7 @@ class InterrogateModels: text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
top_count = min(top_count, len(text_array))
- text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
+ text_tokens = clip.tokenize(list(text_array), truncate=True).to(devices.device_interrogate)
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
text_features /= text_features.norm(dim=-1, keepdim=True)
@@ -208,13 +207,13 @@ class InterrogateModels: image_features /= image_features.norm(dim=-1, keepdim=True)
- for name, topn, items in self.categories():
- matches = self.rank(image_features, items, top_count=topn)
+ for cat in self.categories():
+ matches = self.rank(image_features, cat.items, top_count=cat.topn)
for match, score in matches:
if shared.opts.interrogate_return_ranks:
res += f", ({match}:{score/100:.3f})"
else:
- res += ", " + match
+ res += f", {match}"
except Exception:
print("Error interrogating", file=sys.stderr)
diff --git a/modules/localization.py b/modules/localization.py index f6a6f2fb..ee9c65e7 100644 --- a/modules/localization.py +++ b/modules/localization.py @@ -23,7 +23,7 @@ def list_localizations(dirname): localizations[fn] = file.path
-def localization_js(current_localization_name):
+def localization_js(current_localization_name: str) -> str:
fn = localizations.get(current_localization_name, None)
data = {}
if fn is not None:
@@ -34,4 +34,4 @@ def localization_js(current_localization_name): print(f"Error loading localization from {fn}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
- return f"var localization = {json.dumps(data)}\n"
+ return f"window.localization = {json.dumps(data)}"
diff --git a/modules/mac_specific.py b/modules/mac_specific.py index 6fe8dea0..d74c6b95 100644 --- a/modules/mac_specific.py +++ b/modules/mac_specific.py @@ -1,6 +1,5 @@ import torch import platform -from modules import paths from modules.sd_hijack_utils import CondFunc from packaging import version @@ -43,7 +42,7 @@ if has_mps: # MPS workaround for https://github.com/pytorch/pytorch/issues/79383 CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs), lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')) - # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 + # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs), lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps') # MPS workaround for https://github.com/pytorch/pytorch/issues/90532 @@ -54,6 +53,11 @@ if has_mps: CondFunc('torch.cumsum', cumsum_fix_func, None) CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None) CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None) - if version.parse(torch.__version__) == version.parse("2.0"): + # MPS workaround for https://github.com/pytorch/pytorch/issues/96113 - CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda *args, **kwargs: len(args) == 6) + CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda _, input, *args, **kwargs: len(args) == 4 and input.device.type == 'mps') + + # MPS workaround for https://github.com/pytorch/pytorch/issues/92311 + if platform.processor() == 'i386': + for funcName in ['torch.argmax', 'torch.Tensor.argmax']: + CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps') diff --git a/modules/masking.py b/modules/masking.py index a5c4d2da..be9f84c7 100644 --- a/modules/masking.py +++ b/modules/masking.py @@ -4,7 +4,7 @@ from PIL import Image, ImageFilter, ImageOps def get_crop_region(mask, pad=0):
"""finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle.
For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)"""
-
+
h, w = mask.shape
crop_left = 0
diff --git a/modules/modelloader.py b/modules/modelloader.py index 522affc6..2a479bcb 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -1,4 +1,3 @@ -import glob import os import shutil import importlib @@ -22,9 +21,6 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None """ output = [] - if ext_filter is None: - ext_filter = [] - try: places = [] @@ -39,22 +35,14 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None places.append(model_path) for place in places: - if os.path.exists(place): - for file in glob.iglob(place + '**/**', recursive=True): - full_path = file - if os.path.isdir(full_path): - continue - if os.path.islink(full_path) and not os.path.exists(full_path): - print(f"Skipping broken symlink: {full_path}") - continue - if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]): - continue - if len(ext_filter) != 0: - model_name, extension = os.path.splitext(file) - if extension not in ext_filter: - continue - if file not in output: - output.append(full_path) + for full_path in shared.walk_files(place, allowed_extensions=ext_filter): + if os.path.islink(full_path) and not os.path.exists(full_path): + print(f"Skipping broken symlink: {full_path}") + continue + if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist): + continue + if full_path not in output: + output.append(full_path) if model_url is not None and len(output) == 0: if download_name is not None: @@ -119,32 +107,15 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None): print(f"Moving {file} from {src_path} to {dest_path}.") try: shutil.move(fullpath, dest_path) - except: + except Exception: pass if len(os.listdir(src_path)) == 0: print(f"Removing empty folder: {src_path}") shutil.rmtree(src_path, True) - except: + except Exception: pass -builtin_upscaler_classes = [] -forbidden_upscaler_classes = set() - - -def list_builtin_upscalers(): - load_upscalers() - - builtin_upscaler_classes.clear() - builtin_upscaler_classes.extend(Upscaler.__subclasses__()) - - -def forbid_loaded_nonbuiltin_upscalers(): - for cls in Upscaler.__subclasses__(): - if cls not in builtin_upscaler_classes: - forbidden_upscaler_classes.add(cls) - - def load_upscalers(): # We can only do this 'magic' method to dynamically load upscalers if they are referenced, # so we'll try to import any _model.py files before looking in __subclasses__ @@ -155,15 +126,22 @@ def load_upscalers(): full_model = f"modules.{model_name}_model" try: importlib.import_module(full_model) - except: + except Exception: pass datas = [] commandline_options = vars(shared.cmd_opts) - for cls in Upscaler.__subclasses__(): - if cls in forbidden_upscaler_classes: - continue + # some of upscaler classes will not go away after reloading their modules, and we'll end + # up with two copies of those classes. The newest copy will always be the last in the list, + # so we go from end to beginning and ignore duplicates + used_classes = {} + for cls in reversed(Upscaler.__subclasses__()): + classname = str(cls) + if classname not in used_classes: + used_classes[classname] = cls + + for cls in reversed(used_classes.values()): name = cls.__name__ cmd_name = f"{name.lower().replace('upscaler', '')}_models_path" scaler = cls(commandline_options.get(cmd_name, None)) diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index f3d49c44..3fb76b65 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -52,7 +52,7 @@ class DDPM(pl.LightningModule): beta_schedule="linear", loss_type="l2", ckpt_path=None, - ignore_keys=[], + ignore_keys=None, load_only_unet=False, monitor="val/loss", use_ema=True, @@ -107,7 +107,7 @@ class DDPM(pl.LightningModule): print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) # If initialing from EMA-only checkpoint, create EMA model after loading. if self.use_ema and not load_ema: @@ -194,7 +194,9 @@ class DDPM(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + def init_from_ckpt(self, path, ignore_keys=None, only_model=False): + ignore_keys = ignore_keys or [] + sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] @@ -223,7 +225,7 @@ class DDPM(pl.LightningModule): for k in keys: for ik in ignore_keys: if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) + print(f"Deleting key {k} from state_dict.") del sd[k] missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( sd, strict=False) @@ -386,7 +388,7 @@ class DDPM(pl.LightningModule): _, loss_dict_no_ema = self.shared_step(batch) with self.ema_scope(): _, loss_dict_ema = self.shared_step(batch) - loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} + loss_dict_ema = {f"{key}_ema": loss_dict_ema[key] for key in loss_dict_ema} self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) @@ -403,7 +405,7 @@ class DDPM(pl.LightningModule): @torch.no_grad() def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.first_stage_key) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) @@ -411,7 +413,7 @@ class DDPM(pl.LightningModule): log["inputs"] = x # get diffusion row - diffusion_row = list() + diffusion_row = [] x_start = x[:n_row] for t in range(self.num_timesteps): @@ -473,13 +475,13 @@ class LatentDiffusion(DDPM): conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, load_ema=load_ema, **kwargs) + super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: + except Exception: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor @@ -891,16 +893,6 @@ class LatentDiffusion(DDPM): c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): @@ -1140,7 +1132,7 @@ class LatentDiffusion(DDPM): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] @@ -1171,8 +1163,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) return img, intermediates @torch.no_grad() @@ -1219,8 +1213,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) if return_intermediates: return img, intermediates @@ -1235,7 +1231,7 @@ class LatentDiffusion(DDPM): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, @@ -1267,7 +1263,7 @@ class LatentDiffusion(DDPM): use_ddim = False - log = dict() + log = {} z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, @@ -1295,7 +1291,7 @@ class LatentDiffusion(DDPM): if plot_diffusion_rows: # get diffusion row - diffusion_row = list() + diffusion_row = [] z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: @@ -1337,7 +1333,7 @@ class LatentDiffusion(DDPM): if inpaint: # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] + h, w = z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. @@ -1439,10 +1435,10 @@ class Layout2ImgDiffusion(LatentDiffusion): # TODO: move all layout-specific hacks to this class def __init__(self, cond_stage_key, *args, **kwargs): assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) + logs = super().log_images(*args, batch=batch, N=N, **kwargs) key = 'train' if self.training else 'validation' dset = self.trainer.datamodule.datasets[key] diff --git a/modules/models/diffusion/uni_pc/__init__.py b/modules/models/diffusion/uni_pc/__init__.py index e1265e3f..dbb35964 100644 --- a/modules/models/diffusion/uni_pc/__init__.py +++ b/modules/models/diffusion/uni_pc/__init__.py @@ -1 +1 @@ -from .sampler import UniPCSampler +from .sampler import UniPCSampler # noqa: F401 diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py index a241c8a7..0a9defa1 100644 --- a/modules/models/diffusion/uni_pc/sampler.py +++ b/modules/models/diffusion/uni_pc/sampler.py @@ -54,7 +54,8 @@ class UniPCSampler(object): if conditioning is not None: if isinstance(conditioning, dict): ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): ctmp = ctmp[0] + while isinstance(ctmp, list): + ctmp = ctmp[0] cbs = ctmp.shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index eb5f4e76..d257a728 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -1,7 +1,6 @@ import torch -import torch.nn.functional as F import math -from tqdm.auto import trange +import tqdm class NoiseScheduleVP: @@ -94,7 +93,7 @@ class NoiseScheduleVP: """ if schedule not in ['discrete', 'linear', 'cosine']: - raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule)) + raise ValueError(f"Unsupported noise schedule {schedule}. The schedule needs to be 'discrete' or 'linear' or 'cosine'") self.schedule = schedule if schedule == 'discrete': @@ -179,13 +178,13 @@ def model_wrapper( model, noise_schedule, model_type="noise", - model_kwargs={}, + model_kwargs=None, guidance_type="uncond", #condition=None, #unconditional_condition=None, guidance_scale=1., classifier_fn=None, - classifier_kwargs={}, + classifier_kwargs=None, ): """Create a wrapper function for the noise prediction model. @@ -276,6 +275,9 @@ def model_wrapper( A noise prediction model that accepts the noised data and the continuous time as the inputs. """ + model_kwargs = model_kwargs or {} + classifier_kwargs = classifier_kwargs or {} + def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. @@ -342,7 +344,7 @@ def model_wrapper( t_in = torch.cat([t_continuous] * 2) if isinstance(condition, dict): assert isinstance(unconditional_condition, dict) - c_in = dict() + c_in = {} for k in condition: if isinstance(condition[k], list): c_in[k] = [torch.cat([ @@ -353,7 +355,7 @@ def model_wrapper( unconditional_condition[k], condition[k]]) elif isinstance(condition, list): - c_in = list() + c_in = [] assert isinstance(unconditional_condition, list) for i in range(len(condition)): c_in.append(torch.cat([unconditional_condition[i], condition[i]])) @@ -469,7 +471,7 @@ class UniPC: t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device) return t else: - raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) + raise ValueError(f"Unsupported skip_type {skip_type}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'") def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): """ @@ -757,40 +759,44 @@ class UniPC: vec_t = timesteps[0].expand((x.shape[0])) model_prev_list = [self.model_fn(x, vec_t)] t_prev_list = [vec_t] - # Init the first `order` values by lower order multistep DPM-Solver. - for init_order in range(1, order): - vec_t = timesteps[init_order].expand(x.shape[0]) - x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True) - if model_x is None: - model_x = self.model_fn(x, vec_t) - if self.after_update is not None: - self.after_update(x, model_x) - model_prev_list.append(model_x) - t_prev_list.append(vec_t) - for step in trange(order, steps + 1): - vec_t = timesteps[step].expand(x.shape[0]) - if lower_order_final: - step_order = min(order, steps + 1 - step) - else: - step_order = order - #print('this step order:', step_order) - if step == steps: - #print('do not run corrector at the last step') - use_corrector = False - else: - use_corrector = True - x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector) - if self.after_update is not None: - self.after_update(x, model_x) - for i in range(order - 1): - t_prev_list[i] = t_prev_list[i + 1] - model_prev_list[i] = model_prev_list[i + 1] - t_prev_list[-1] = vec_t - # We do not need to evaluate the final model value. - if step < steps: + with tqdm.tqdm(total=steps) as pbar: + # Init the first `order` values by lower order multistep DPM-Solver. + for init_order in range(1, order): + vec_t = timesteps[init_order].expand(x.shape[0]) + x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True) if model_x is None: model_x = self.model_fn(x, vec_t) - model_prev_list[-1] = model_x + if self.after_update is not None: + self.after_update(x, model_x) + model_prev_list.append(model_x) + t_prev_list.append(vec_t) + pbar.update() + + for step in range(order, steps + 1): + vec_t = timesteps[step].expand(x.shape[0]) + if lower_order_final: + step_order = min(order, steps + 1 - step) + else: + step_order = order + #print('this step order:', step_order) + if step == steps: + #print('do not run corrector at the last step') + use_corrector = False + else: + use_corrector = True + x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector) + if self.after_update is not None: + self.after_update(x, model_x) + for i in range(order - 1): + t_prev_list[i] = t_prev_list[i + 1] + model_prev_list[i] = model_prev_list[i + 1] + t_prev_list[-1] = vec_t + # We do not need to evaluate the final model value. + if step < steps: + if model_x is None: + model_x = self.model_fn(x, vec_t) + model_prev_list[-1] = model_x + pbar.update() else: raise NotImplementedError() if denoise_to_zero: diff --git a/modules/ngrok.py b/modules/ngrok.py index 1ad7989b..67a74e85 100644 --- a/modules/ngrok.py +++ b/modules/ngrok.py @@ -7,13 +7,13 @@ def connect(token, port, region): else: if ':' in token: # token = authtoken:username:password - account = token.split(':')[1] + ':' + token.split(':')[-1] - token = token.split(':')[0] + token, username, password = token.split(':', 2) + account = f"{username}:{password}" config = conf.PyngrokConfig( auth_token=token, region=region ) - + # Guard for existing tunnels existing = ngrok.get_tunnels(pyngrok_config=config) if existing: @@ -24,7 +24,7 @@ def connect(token, port, region): print(f'ngrok has already been connected to localhost:{port}! URL: {public_url}\n' 'You can use this link after the launch is complete.') return - + try: if account is None: public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url diff --git a/modules/paths.py b/modules/paths.py index 0e1e00e7..5f6474c0 100644 --- a/modules/paths.py +++ b/modules/paths.py @@ -1,8 +1,8 @@ import os
import sys
-from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir
+from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir # noqa: F401
-import modules.safe
+import modules.safe # noqa: F401
# data_path = cmd_opts_pre.data
@@ -16,7 +16,7 @@ for possible_sd_path in possible_sd_paths: sd_path = os.path.abspath(possible_sd_path)
break
-assert sd_path is not None, "Couldn't find Stable Diffusion in any of: " + str(possible_sd_paths)
+assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possible_sd_paths}"
path_dirs = [
(sd_path, 'ldm', 'Stable Diffusion', []),
diff --git a/modules/paths_internal.py b/modules/paths_internal.py index 6765bafe..005a9b0a 100644 --- a/modules/paths_internal.py +++ b/modules/paths_internal.py @@ -2,8 +2,14 @@ import argparse
import os
+import sys
+import shlex
-script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
+commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
+sys.argv += shlex.split(commandline_args)
+
+modules_path = os.path.dirname(os.path.realpath(__file__))
+script_path = os.path.dirname(modules_path)
sd_configs_path = os.path.join(script_path, "configs")
sd_default_config = os.path.join(sd_configs_path, "v1-inference.yaml")
@@ -12,7 +18,7 @@ default_sd_model_file = sd_model_file # Parse the --data-dir flag first so we can use it as a base for our other argument default values
parser_pre = argparse.ArgumentParser(add_help=False)
-parser_pre.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",)
+parser_pre.add_argument("--data-dir", type=str, default=os.path.dirname(modules_path), help="base path where all user data is stored", )
cmd_opts_pre = parser_pre.parse_known_args()[0]
data_path = cmd_opts_pre.data_dir
@@ -21,3 +27,5 @@ models_path = os.path.join(data_path, "models") extensions_dir = os.path.join(data_path, "extensions")
extensions_builtin_dir = os.path.join(script_path, "extensions-builtin")
config_states_dir = os.path.join(script_path, "config_states")
+
+roboto_ttf_file = os.path.join(modules_path, 'Roboto-Regular.ttf')
diff --git a/modules/processing.py b/modules/processing.py index e8808beb..94fe2625 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -2,7 +2,6 @@ import json import math
import os
import sys
-import warnings
import hashlib
import torch
@@ -11,10 +10,10 @@ from PIL import Image, ImageFilter, ImageOps import random
import cv2
from skimage import exposure
-from typing import Any, Dict, List, Optional
+from typing import Any, Dict, List
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx, scripts
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@@ -30,6 +29,13 @@ from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType
+import tomesd
+
+# add a logger for the processing module
+logger = logging.getLogger(__name__)
+# manually set output level here since there is no option to do so yet through launch options
+# logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(name)s %(message)s')
+
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
@@ -165,7 +171,7 @@ class StableDiffusionProcessing: self.all_subseeds = None
self.iteration = 0
self.is_hr_pass = False
-
+
@property
def sd_model(self):
@@ -458,10 +464,21 @@ def fix_seed(p): p.subseed = get_fixed_seed(p.subseed)
+def program_version():
+ import launch
+
+ res = launch.git_tag()
+ if res == "<none>":
+ res = None
+
+ return res
+
+
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
index = position_in_batch + iteration * p.batch_size
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
+ enable_hr = getattr(p, 'enable_hr', False)
generation_params = {
"Steps": p.steps,
@@ -480,16 +497,19 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
+ "Token merging ratio": None if opts.token_merging_ratio == 0 else opts.token_merging_ratio,
+ "Token merging ratio hr": None if not enable_hr or opts.token_merging_ratio_hr == 0 else opts.token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
+ "Version": program_version() if opts.add_version_to_infotext else None,
}
generation_params.update(p.extra_generation_params)
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
- negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""
+ negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
@@ -512,9 +532,18 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if k == 'sd_vae':
sd_vae.reload_vae_weights()
+ if opts.token_merging_ratio > 0:
+ sd_models.apply_token_merging(sd_model=p.sd_model, hr=False)
+ logger.debug(f"Token merging applied to first pass. Ratio: '{opts.token_merging_ratio}'")
+
res = process_images_inner(p)
finally:
+ # undo model optimizations made by tomesd
+ if opts.token_merging_ratio > 0:
+ tomesd.remove_patch(p.sd_model)
+ logger.debug('Token merging model optimizations removed')
+
# restore opts to original state
if p.override_settings_restore_afterwards:
for k, v in stored_opts.items():
@@ -653,7 +682,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if not shared.opts.dont_fix_second_order_samplers_schedule:
try:
step_multiplier = 2 if sd_samplers.all_samplers_map.get(p.sampler_name).aliases[0] in ['k_dpmpp_2s_a', 'k_dpmpp_2s_a_ka', 'k_dpmpp_sde', 'k_dpmpp_sde_ka', 'k_dpm_2', 'k_dpm_2_a', 'k_heun'] else 1
- except:
+ except Exception:
pass
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps * step_multiplier, cached_uc)
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps * step_multiplier, cached_c)
@@ -769,7 +798,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: devices.torch_gc()
- res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
+ res = Processed(
+ p,
+ images_list=output_images,
+ seed=p.all_seeds[0],
+ info=infotext(),
+ comments="".join(f"\n\n{comment}" for comment in comments),
+ subseed=p.all_subseeds[0],
+ index_of_first_image=index_of_first_image,
+ infotexts=infotexts,
+ )
if p.scripts is not None:
p.scripts.postprocess(p, res)
@@ -958,8 +996,22 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): x = None
devices.torch_gc()
+ # apply token merging optimizations from tomesd for high-res pass
+ if opts.token_merging_ratio_hr > 0:
+ # in case the user has used separate merge ratios
+ if opts.token_merging_ratio > 0:
+ tomesd.remove_patch(self.sd_model)
+ logger.debug('Adjusting token merging ratio for high-res pass')
+
+ sd_models.apply_token_merging(sd_model=self.sd_model, hr=True)
+ logger.debug(f"Applied token merging for high-res pass. Ratio: '{opts.token_merging_ratio_hr}'")
+
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
+ if opts.token_merging_ratio_hr > 0 or opts.token_merging_ratio > 0:
+ tomesd.remove_patch(self.sd_model)
+ logger.debug('Removed token merging optimizations from model')
+
self.is_hr_pass = False
return samples
diff --git a/modules/progress.py b/modules/progress.py index 5655346b..269863c9 100644 --- a/modules/progress.py +++ b/modules/progress.py @@ -95,8 +95,16 @@ def progressapi(req: ProgressRequest): image = shared.state.current_image
if image is not None:
buffered = io.BytesIO()
- image.save(buffered, format="png")
- live_preview = 'data:image/png;base64,' + base64.b64encode(buffered.getvalue()).decode("ascii")
+
+ if opts.live_previews_image_format == "png":
+ # using optimize for large images takes an enormous amount of time
+ save_kwargs = {"optimize": max(*image.size) > 256}
+ else:
+ save_kwargs = {}
+
+ image.save(buffered, format=opts.live_previews_image_format, **save_kwargs)
+ base64_image = base64.b64encode(buffered.getvalue()).decode('ascii')
+ live_preview = f"data:image/{opts.live_previews_image_format};base64,{base64_image}"
id_live_preview = shared.state.id_live_preview
else:
live_preview = None
diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index 69665372..b4aff704 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -54,18 +54,21 @@ def get_learned_conditioning_prompt_schedules(prompts, steps): """
def collect_steps(steps, tree):
- l = [steps]
+ res = [steps]
+
class CollectSteps(lark.Visitor):
def scheduled(self, tree):
tree.children[-1] = float(tree.children[-1])
if tree.children[-1] < 1:
tree.children[-1] *= steps
tree.children[-1] = min(steps, int(tree.children[-1]))
- l.append(tree.children[-1])
+ res.append(tree.children[-1])
+
def alternate(self, tree):
- l.extend(range(1, steps+1))
+ res.extend(range(1, steps+1))
+
CollectSteps().visit(tree)
- return sorted(set(l))
+ return sorted(set(res))
def at_step(step, tree):
class AtStep(lark.Transformer):
@@ -92,7 +95,7 @@ def get_learned_conditioning_prompt_schedules(prompts, steps): def get_schedule(prompt):
try:
tree = schedule_parser.parse(prompt)
- except lark.exceptions.LarkError as e:
+ except lark.exceptions.LarkError:
if 0:
import traceback
traceback.print_exc()
@@ -140,7 +143,7 @@ def get_learned_conditioning(model, prompts, steps): conds = model.get_learned_conditioning(texts)
cond_schedule = []
- for i, (end_at_step, text) in enumerate(prompt_schedule):
+ for i, (end_at_step, _) in enumerate(prompt_schedule):
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))
cache[prompt] = cond_schedule
@@ -216,8 +219,8 @@ def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_s res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
for i, cond_schedule in enumerate(c):
target_index = 0
- for current, (end_at, cond) in enumerate(cond_schedule):
- if current_step <= end_at:
+ for current, entry in enumerate(cond_schedule):
+ if current_step <= entry.end_at_step:
target_index = current
break
res[i] = cond_schedule[target_index].cond
@@ -231,13 +234,13 @@ def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): tensors = []
conds_list = []
- for batch_no, composable_prompts in enumerate(c.batch):
+ for composable_prompts in c.batch:
conds_for_batch = []
- for cond_index, composable_prompt in enumerate(composable_prompts):
+ for composable_prompt in composable_prompts:
target_index = 0
- for current, (end_at, cond) in enumerate(composable_prompt.schedules):
- if current_step <= end_at:
+ for current, entry in enumerate(composable_prompt.schedules):
+ if current_step <= entry.end_at_step:
target_index = current
break
diff --git a/modules/realesrgan_model.py b/modules/realesrgan_model.py index d6079433..c24d8dbb 100644 --- a/modules/realesrgan_model.py +++ b/modules/realesrgan_model.py @@ -17,9 +17,9 @@ class UpscalerRealESRGAN(Upscaler): self.user_path = path
super().__init__()
try:
- from basicsr.archs.rrdbnet_arch import RRDBNet
- from realesrgan import RealESRGANer
- from realesrgan.archs.srvgg_arch import SRVGGNetCompact
+ from basicsr.archs.rrdbnet_arch import RRDBNet # noqa: F401
+ from realesrgan import RealESRGANer # noqa: F401
+ from realesrgan.archs.srvgg_arch import SRVGGNetCompact # noqa: F401
self.enable = True
self.scalers = []
scalers = self.load_models(path)
@@ -28,9 +28,9 @@ class UpscalerRealESRGAN(Upscaler): for scaler in scalers:
if scaler.local_data_path.startswith("http"):
filename = modelloader.friendly_name(scaler.local_data_path)
- local = next(iter([local_model for local_model in local_model_paths if local_model.endswith(filename + '.pth')]), None)
- if local:
- scaler.local_data_path = local
+ local_model_candidates = [local_model for local_model in local_model_paths if local_model.endswith(f"{filename}.pth")]
+ if local_model_candidates:
+ scaler.local_data_path = local_model_candidates[0]
if scaler.name in opts.realesrgan_enabled_models:
self.scalers.append(scaler)
@@ -47,7 +47,7 @@ class UpscalerRealESRGAN(Upscaler): info = self.load_model(path)
if not os.path.exists(info.local_data_path):
- print("Unable to load RealESRGAN model: %s" % info.name)
+ print(f"Unable to load RealESRGAN model: {info.name}")
return img
upsampler = RealESRGANer(
@@ -134,6 +134,6 @@ def get_realesrgan_models(scaler): ),
]
return models
- except Exception as e:
+ except Exception:
print("Error making Real-ESRGAN models list:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
diff --git a/modules/safe.py b/modules/safe.py index e6c2f2c0..e8f50774 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -40,7 +40,7 @@ class RestrictedUnpickler(pickle.Unpickler): return getattr(collections, name)
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']:
return getattr(torch._utils, name)
- if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']:
+ if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32', 'BFloat16Storage']:
return getattr(torch, name)
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
return getattr(torch.nn.modules.container, name)
@@ -95,16 +95,16 @@ def check_pt(filename, extra_handler): except zipfile.BadZipfile:
- # if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
+ # if it's not a zip file, it's an old pytorch format, with five objects written to pickle
with open(filename, "rb") as file:
unpickler = RestrictedUnpickler(file)
unpickler.extra_handler = extra_handler
- for i in range(5):
+ for _ in range(5):
unpickler.load()
def load(filename, *args, **kwargs):
- return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
+ return load_with_extra(filename, *args, extra_handler=global_extra_handler, **kwargs)
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 17109732..3c21a362 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -32,27 +32,42 @@ class CFGDenoiserParams: def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond):
self.x = x
"""Latent image representation in the process of being denoised"""
-
+
self.image_cond = image_cond
"""Conditioning image"""
-
+
self.sigma = sigma
"""Current sigma noise step value"""
-
+
self.sampling_step = sampling_step
"""Current Sampling step number"""
-
+
self.total_sampling_steps = total_sampling_steps
"""Total number of sampling steps planned"""
-
+
self.text_cond = text_cond
""" Encoder hidden states of text conditioning from prompt"""
-
+
self.text_uncond = text_uncond
""" Encoder hidden states of text conditioning from negative prompt"""
class CFGDenoisedParams:
+ def __init__(self, x, sampling_step, total_sampling_steps, inner_model):
+ self.x = x
+ """Latent image representation in the process of being denoised"""
+
+ self.sampling_step = sampling_step
+ """Current Sampling step number"""
+
+ self.total_sampling_steps = total_sampling_steps
+ """Total number of sampling steps planned"""
+
+ self.inner_model = inner_model
+ """Inner model reference used for denoising"""
+
+
+class AfterCFGCallbackParams:
def __init__(self, x, sampling_step, total_sampling_steps):
self.x = x
"""Latent image representation in the process of being denoised"""
@@ -87,6 +102,7 @@ callback_map = dict( callbacks_image_saved=[],
callbacks_cfg_denoiser=[],
callbacks_cfg_denoised=[],
+ callbacks_cfg_after_cfg=[],
callbacks_before_component=[],
callbacks_after_component=[],
callbacks_image_grid=[],
@@ -186,6 +202,14 @@ def cfg_denoised_callback(params: CFGDenoisedParams): report_exception(c, 'cfg_denoised_callback')
+def cfg_after_cfg_callback(params: AfterCFGCallbackParams):
+ for c in callback_map['callbacks_cfg_after_cfg']:
+ try:
+ c.callback(params)
+ except Exception:
+ report_exception(c, 'cfg_after_cfg_callback')
+
+
def before_component_callback(component, **kwargs):
for c in callback_map['callbacks_before_component']:
try:
@@ -240,7 +264,7 @@ def add_callback(callbacks, fun): callbacks.append(ScriptCallback(filename, fun))
-
+
def remove_current_script_callbacks():
stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
@@ -332,6 +356,14 @@ def on_cfg_denoised(callback): add_callback(callback_map['callbacks_cfg_denoised'], callback)
+def on_cfg_after_cfg(callback):
+ """register a function to be called in the kdiffussion cfg_denoiser method after cfg calculations are completed.
+ The callback is called with one argument:
+ - params: AfterCFGCallbackParams - parameters to be passed to the script for post-processing after cfg calculation.
+ """
+ add_callback(callback_map['callbacks_cfg_after_cfg'], callback)
+
+
def on_before_component(callback):
"""register a function to be called before a component is created.
The callback is called with arguments:
diff --git a/modules/script_loading.py b/modules/script_loading.py index a7d2203f..57b15862 100644 --- a/modules/script_loading.py +++ b/modules/script_loading.py @@ -2,7 +2,6 @@ import os import sys
import traceback
import importlib.util
-from types import ModuleType
def load_module(path):
diff --git a/modules/scripts.py b/modules/scripts.py index 4d0bbd66..0c12ebd5 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -163,7 +163,8 @@ class Script: """helper function to generate id for a HTML element, constructs final id out of script name, tab and user-supplied item_id"""
need_tabname = self.show(True) == self.show(False)
- tabname = ('img2img' if self.is_img2img else 'txt2txt') + "_" if need_tabname else ""
+ tabkind = 'img2img' if self.is_img2img else 'txt2txt'
+ tabname = f"{tabkind}_" if need_tabname else ""
title = re.sub(r'[^a-z_0-9]', '', re.sub(r'\s', '_', self.title().lower()))
return f'script_{tabname}{title}_{item_id}'
@@ -230,7 +231,7 @@ def load_scripts(): syspath = sys.path
def register_scripts_from_module(module):
- for key, script_class in module.__dict__.items():
+ for script_class in module.__dict__.values():
if type(script_class) != type:
continue
@@ -294,9 +295,9 @@ class ScriptRunner: auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data()
- for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data:
- script = script_class()
- script.filename = path
+ for script_data in auto_processing_scripts + scripts_data:
+ script = script_data.script_class()
+ script.filename = script_data.path
script.is_txt2img = not is_img2img
script.is_img2img = is_img2img
@@ -491,7 +492,7 @@ class ScriptRunner: module = script_loading.load_module(script.filename)
cache[filename] = module
- for key, script_class in module.__dict__.items():
+ for script_class in module.__dict__.values():
if type(script_class) == type and issubclass(script_class, Script):
self.scripts[si] = script_class()
self.scripts[si].filename = filename
@@ -526,7 +527,7 @@ def add_classes_to_gradio_component(comp): this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others
"""
- comp.elem_classes = ["gradio-" + comp.get_block_name(), *(comp.elem_classes or [])]
+ comp.elem_classes = [f"gradio-{comp.get_block_name()}", *(comp.elem_classes or [])]
if getattr(comp, 'multiselect', False):
comp.elem_classes.append('multiselect')
diff --git a/modules/scripts_auto_postprocessing.py b/modules/scripts_auto_postprocessing.py index 30d6d658..d63078de 100644 --- a/modules/scripts_auto_postprocessing.py +++ b/modules/scripts_auto_postprocessing.py @@ -17,7 +17,7 @@ class ScriptPostprocessingForMainUI(scripts.Script): return self.postprocessing_controls.values()
def postprocess_image(self, p, script_pp, *args):
- args_dict = {k: v for k, v in zip(self.postprocessing_controls, args)}
+ args_dict = dict(zip(self.postprocessing_controls, args))
pp = scripts_postprocessing.PostprocessedImage(script_pp.image)
pp.info = {}
diff --git a/modules/scripts_postprocessing.py b/modules/scripts_postprocessing.py index b11568c0..bac1335d 100644 --- a/modules/scripts_postprocessing.py +++ b/modules/scripts_postprocessing.py @@ -66,9 +66,9 @@ class ScriptPostprocessingRunner: def initialize_scripts(self, scripts_data):
self.scripts = []
- for script_class, path, basedir, script_module in scripts_data:
- script: ScriptPostprocessing = script_class()
- script.filename = path
+ for script_data in scripts_data:
+ script: ScriptPostprocessing = script_data.script_class()
+ script.filename = script_data.path
if script.name == "Simple Upscale":
continue
@@ -124,7 +124,7 @@ class ScriptPostprocessingRunner: script_args = args[script.args_from:script.args_to]
process_args = {}
- for (name, component), value in zip(script.controls.items(), script_args):
+ for (name, _component), value in zip(script.controls.items(), script_args):
process_args[name] = value
script.process(pp, **process_args)
diff --git a/modules/sd_disable_initialization.py b/modules/sd_disable_initialization.py index c4a09d15..9fc89dc6 100644 --- a/modules/sd_disable_initialization.py +++ b/modules/sd_disable_initialization.py @@ -61,7 +61,7 @@ class DisableInitialization: if res is None:
res = original(url, *args, local_files_only=False, **kwargs)
return res
- except Exception as e:
+ except Exception:
return original(url, *args, local_files_only=False, **kwargs)
def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index f4bb0266..7e50f1ab 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -3,7 +3,7 @@ from torch.nn.functional import silu from types import MethodType
import modules.textual_inversion.textual_inversion
-from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
+from modules import devices, sd_hijack_optimizations, shared
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
@@ -34,10 +34,10 @@ def apply_optimizations(): ldm.modules.diffusionmodules.model.nonlinearity = silu
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
-
+
optimization_method = None
- can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(getattr(torch.nn.functional, "scaled_dot_product_attention")) # not everyone has torch 2.x to use sdp
+ can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention) # not everyone has torch 2.x to use sdp
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
print("Applying xformers cross attention optimization.")
@@ -92,12 +92,12 @@ def fix_checkpoint(): def weighted_loss(sd_model, pred, target, mean=True):
#Calculate the weight normally, but ignore the mean
loss = sd_model._old_get_loss(pred, target, mean=False)
-
+
#Check if we have weights available
weight = getattr(sd_model, '_custom_loss_weight', None)
if weight is not None:
loss *= weight
-
+
#Return the loss, as mean if specified
return loss.mean() if mean else loss
@@ -105,7 +105,7 @@ def weighted_forward(sd_model, x, c, w, *args, **kwargs): try:
#Temporarily append weights to a place accessible during loss calc
sd_model._custom_loss_weight = w
-
+
#Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
#Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
if not hasattr(sd_model, '_old_get_loss'):
@@ -118,9 +118,9 @@ def weighted_forward(sd_model, x, c, w, *args, **kwargs): try:
#Delete temporary weights if appended
del sd_model._custom_loss_weight
- except AttributeError as e:
+ except AttributeError:
pass
-
+
#If we have an old loss function, reset the loss function to the original one
if hasattr(sd_model, '_old_get_loss'):
sd_model.get_loss = sd_model._old_get_loss
@@ -133,7 +133,7 @@ def apply_weighted_forward(sd_model): def undo_weighted_forward(sd_model):
try:
del sd_model.weighted_forward
- except AttributeError as e:
+ except AttributeError:
pass
@@ -184,7 +184,7 @@ class StableDiffusionModelHijack: def undo_hijack(self, m):
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
- m.cond_stage_model = m.cond_stage_model.wrapped
+ m.cond_stage_model = m.cond_stage_model.wrapped
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped
diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py index 9fa5c5c5..cc6e8c21 100644 --- a/modules/sd_hijack_clip.py +++ b/modules/sd_hijack_clip.py @@ -223,7 +223,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): self.hijack.fixes = [x.fixes for x in batch_chunk]
for fixes in self.hijack.fixes:
- for position, embedding in fixes:
+ for _position, embedding in fixes:
used_embeddings[embedding.name] = embedding
z = self.process_tokens(tokens, multipliers)
diff --git a/modules/sd_hijack_clip_old.py b/modules/sd_hijack_clip_old.py index 6d9fbbe6..a3476e95 100644 --- a/modules/sd_hijack_clip_old.py +++ b/modules/sd_hijack_clip_old.py @@ -75,7 +75,8 @@ def forward_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, text self.hijack.comments += hijack_comments
if len(used_custom_terms) > 0:
- self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
+ embedding_names = ", ".join(f"{word} [{checksum}]" for word, checksum in used_custom_terms)
+ self.hijack.comments.append(f"Used embeddings: {embedding_names}")
self.hijack.fixes = hijack_fixes
return self.process_tokens(remade_batch_tokens, batch_multipliers)
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 55a2ce4d..c1977b19 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -1,16 +1,10 @@ -import os import torch -from einops import repeat -from omegaconf import ListConfig - import ldm.models.diffusion.ddpm import ldm.models.diffusion.ddim import ldm.models.diffusion.plms -from ldm.models.diffusion.ddpm import LatentDiffusion -from ldm.models.diffusion.plms import PLMSSampler -from ldm.models.diffusion.ddim import DDIMSampler, noise_like +from ldm.models.diffusion.ddim import noise_like from ldm.models.diffusion.sampling_util import norm_thresholding @@ -29,7 +23,7 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F if isinstance(c, dict): assert isinstance(unconditional_conditioning, dict) - c_in = dict() + c_in = {} for k in c: if isinstance(c[k], list): c_in[k] = [ diff --git a/modules/sd_hijack_ip2p.py b/modules/sd_hijack_ip2p.py index 3c727d3b..6fe6b6ff 100644 --- a/modules/sd_hijack_ip2p.py +++ b/modules/sd_hijack_ip2p.py @@ -1,8 +1,5 @@ -import collections import os.path -import sys -import gc -import time + def should_hijack_ip2p(checkpoint_info): from modules import sd_models_config @@ -10,4 +7,4 @@ def should_hijack_ip2p(checkpoint_info): ckpt_basename = os.path.basename(checkpoint_info.filename).lower() cfg_basename = os.path.basename(sd_models_config.find_checkpoint_config_near_filename(checkpoint_info)).lower() - return "pix2pix" in ckpt_basename and not "pix2pix" in cfg_basename + return "pix2pix" in ckpt_basename and "pix2pix" not in cfg_basename diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 372555ff..f00fe55c 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -49,7 +49,7 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): v_in = self.to_v(context_v)
del context, context_k, context_v, x
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
+ q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in))
del q_in, k_in, v_in
dtype = q.dtype
@@ -62,10 +62,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): end = i + 2
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
s1 *= self.scale
-
+
s2 = s1.softmax(dim=-1)
del s1
-
+
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
del s2
del q, k, v
@@ -95,43 +95,43 @@ def split_cross_attention_forward(self, x, context=None, mask=None): with devices.without_autocast(disable=not shared.opts.upcast_attn):
k_in = k_in * self.scale
-
+
del context, x
-
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
+
+ q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in))
del q_in, k_in, v_in
-
+
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
-
+
mem_free_total = get_available_vram()
-
+
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
-
+
if mem_required > mem_free_total:
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
-
+
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
-
+
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
-
+
s2 = s1.softmax(dim=-1, dtype=q.dtype)
del s1
-
+
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
-
+
del q, k, v
r1 = r1.to(dtype)
@@ -228,8 +228,8 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): with devices.without_autocast(disable=not shared.opts.upcast_attn):
k = k * self.scale
-
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+ q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
r = einsum_op(q, k, v)
r = r.to(dtype)
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
@@ -256,6 +256,9 @@ def sub_quad_attention_forward(self, x, context=None, mask=None): k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
+ if q.device.type == 'mps':
+ q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
+
dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
@@ -293,7 +296,6 @@ def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_ if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
# the big matmul fits into our memory limit; do everything in 1 chunk,
# i.e. send it down the unchunked fast-path
- query_chunk_size = q_tokens
kv_chunk_size = k_tokens
with devices.without_autocast(disable=q.dtype == v.dtype):
@@ -332,7 +334,7 @@ def xformers_attention_forward(self, x, context=None, mask=None): k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
+ q, k, v = (rearrange(t, 'b n (h d) -> b n h d', h=h) for t in (q_in, k_in, v_in))
del q_in, k_in, v_in
dtype = q.dtype
@@ -367,7 +369,7 @@ def scaled_dot_product_attention_forward(self, x, context=None, mask=None): q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
-
+
del q_in, k_in, v_in
dtype = q.dtype
@@ -449,7 +451,7 @@ def cross_attention_attnblock_forward(self, x): h3 += x
return h3
-
+
def xformers_attnblock_forward(self, x):
try:
h_ = x
@@ -458,7 +460,7 @@ def xformers_attnblock_forward(self, x): k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
- q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
+ q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
@@ -480,7 +482,7 @@ def sdp_attnblock_forward(self, x): k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
- q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
+ q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
@@ -504,7 +506,7 @@ def sub_quad_attnblock_forward(self, x): k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
- q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
+ q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py index 15858263..ca1daf45 100644 --- a/modules/sd_hijack_unet.py +++ b/modules/sd_hijack_unet.py @@ -18,7 +18,7 @@ class TorchHijackForUnet: if hasattr(torch, item):
return getattr(torch, item)
- raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
+ raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def cat(self, tensors, *args, **kwargs):
if len(tensors) == 2:
diff --git a/modules/sd_hijack_xlmr.py b/modules/sd_hijack_xlmr.py index 4ac51c38..28528329 100644 --- a/modules/sd_hijack_xlmr.py +++ b/modules/sd_hijack_xlmr.py @@ -1,8 +1,6 @@ -import open_clip.tokenizer
import torch
from modules import sd_hijack_clip, devices
-from modules.shared import opts
class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
diff --git a/modules/sd_models.py b/modules/sd_models.py index 4f7613a1..4c9a0a1f 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -2,6 +2,8 @@ import collections import os.path
import sys
import gc
+import threading
+
import torch
import re
import safetensors.torch
@@ -13,9 +15,9 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config
-from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack
from modules.timer import Timer
+import tomesd
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
@@ -45,7 +47,7 @@ class CheckpointInfo: self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
self.hash = model_hash(filename)
- self.sha256 = hashes.sha256_from_cache(self.filename, "checkpoint/" + name)
+ self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}")
self.shorthash = self.sha256[0:10] if self.sha256 else None
self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]'
@@ -67,7 +69,7 @@ class CheckpointInfo: checkpoint_alisases[id] = self
def calculate_shorthash(self):
- self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.name)
+ self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}")
if self.sha256 is None:
return
@@ -85,8 +87,7 @@ class CheckpointInfo: try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
-
- from transformers import logging, CLIPModel
+ from transformers import logging, CLIPModel # noqa: F401
logging.set_verbosity_error()
except Exception:
@@ -165,7 +166,7 @@ def model_hash(filename): def select_checkpoint():
model_checkpoint = shared.opts.sd_model_checkpoint
-
+
checkpoint_info = checkpoint_alisases.get(model_checkpoint, None)
if checkpoint_info is not None:
return checkpoint_info
@@ -237,7 +238,7 @@ def read_metadata_from_safetensors(filename): if isinstance(v, str) and v[0:1] == '{':
try:
res[k] = json.loads(v)
- except Exception as e:
+ except Exception:
pass
return res
@@ -372,7 +373,7 @@ def enable_midas_autodownload(): if not os.path.exists(path):
if not os.path.exists(midas_path):
mkdir(midas_path)
-
+
print(f"Downloading midas model weights for {model_type} to {path}")
request.urlretrieve(midas_urls[model_type], path)
print(f"{model_type} downloaded")
@@ -404,13 +405,39 @@ def repair_config(sd_config): sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
-def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_to_load_state_dict=None):
+
+class SdModelData:
+ def __init__(self):
+ self.sd_model = None
+ self.lock = threading.Lock()
+
+ def get_sd_model(self):
+ if self.sd_model is None:
+ with self.lock:
+ try:
+ load_model()
+ except Exception as e:
+ errors.display(e, "loading stable diffusion model")
+ print("", file=sys.stderr)
+ print("Stable diffusion model failed to load", file=sys.stderr)
+ self.sd_model = None
+
+ return self.sd_model
+
+ def set_sd_model(self, v):
+ self.sd_model = v
+
+
+model_data = SdModelData()
+
+
+def load_model(checkpoint_info=None, already_loaded_state_dict=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
- if shared.sd_model:
- sd_hijack.model_hijack.undo_hijack(shared.sd_model)
- shared.sd_model = None
+ if model_data.sd_model:
+ sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
+ model_data.sd_model = None
gc.collect()
devices.torch_gc()
@@ -439,7 +466,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_ try:
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd):
sd_model = instantiate_from_config(sd_config.model)
- except Exception as e:
+ except Exception:
pass
if sd_model is None:
@@ -464,7 +491,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_ timer.record("hijack")
sd_model.eval()
- shared.sd_model = sd_model
+ model_data.sd_model = sd_model
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
@@ -484,7 +511,7 @@ def reload_model_weights(sd_model=None, info=None): checkpoint_info = info or select_checkpoint()
if not sd_model:
- sd_model = shared.sd_model
+ sd_model = model_data.sd_model
if sd_model is None: # previous model load failed
current_checkpoint_info = None
@@ -512,11 +539,11 @@ def reload_model_weights(sd_model=None, info=None): del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info, already_loaded_state_dict=state_dict)
- return shared.sd_model
+ return model_data.sd_model
try:
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
- except Exception as e:
+ except Exception:
print("Failed to load checkpoint, restoring previous")
load_model_weights(sd_model, current_checkpoint_info, None, timer)
raise
@@ -535,17 +562,15 @@ def reload_model_weights(sd_model=None, info=None): return sd_model
+
def unload_model_weights(sd_model=None, info=None):
- from modules import lowvram, devices, sd_hijack
+ from modules import devices, sd_hijack
timer = Timer()
- if shared.sd_model:
-
- # shared.sd_model.cond_stage_model.to(devices.cpu)
- # shared.sd_model.first_stage_model.to(devices.cpu)
- shared.sd_model.to(devices.cpu)
- sd_hijack.model_hijack.undo_hijack(shared.sd_model)
- shared.sd_model = None
+ if model_data.sd_model:
+ model_data.sd_model.to(devices.cpu)
+ sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
+ model_data.sd_model = None
sd_model = None
gc.collect()
devices.torch_gc()
@@ -554,3 +579,25 @@ def unload_model_weights(sd_model=None, info=None): print(f"Unloaded weights {timer.summary()}.")
return sd_model
+
+
+def apply_token_merging(sd_model, hr: bool):
+ """
+ Applies speed and memory optimizations from tomesd.
+
+ Args:
+ hr (bool): True if called in the context of a high-res pass
+ """
+
+ ratio = shared.opts.token_merging_ratio
+ if hr:
+ ratio = shared.opts.token_merging_ratio_hr
+
+ tomesd.apply_patch(
+ sd_model,
+ ratio=ratio,
+ use_rand=False, # can cause issues with some samplers
+ merge_attn=True,
+ merge_crossattn=False,
+ merge_mlp=False
+ )
diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py index 9398f528..9bfe1237 100644 --- a/modules/sd_models_config.py +++ b/modules/sd_models_config.py @@ -1,4 +1,3 @@ -import re
import os
import torch
@@ -111,7 +110,7 @@ def find_checkpoint_config_near_filename(info): if info is None:
return None
- config = os.path.splitext(info.filename)[0] + ".yaml"
+ config = f"{os.path.splitext(info.filename)[0]}.yaml"
if os.path.exists(config):
return config
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index ff361f22..4f1bf21d 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -1,7 +1,7 @@ from modules import sd_samplers_compvis, sd_samplers_kdiffusion, shared
# imports for functions that previously were here and are used by other modules
-from modules.sd_samplers_common import samples_to_image_grid, sample_to_image
+from modules.sd_samplers_common import samples_to_image_grid, sample_to_image # noqa: F401
all_samplers = [
*sd_samplers_kdiffusion.samplers_data_k_diffusion,
diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py index bfcc5574..b1ee3be7 100644 --- a/modules/sd_samplers_compvis.py +++ b/modules/sd_samplers_compvis.py @@ -55,7 +55,7 @@ class VanillaStableDiffusionSampler: def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
- res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
+ res = self.orig_p_sample_ddim(x_dec, cond, ts, *args, unconditional_conditioning=unconditional_conditioning, **kwargs)
x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
@@ -83,7 +83,7 @@ class VanillaStableDiffusionSampler: conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
- assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
+ assert all(len(conds) == 1 for conds in conds_list), 'composition via AND is not supported for DDIM/PLMS samplers'
cond = tensor
# for DDIM, shapes must match, we can't just process cond and uncond independently;
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index eb98e599..61f23ad7 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -1,7 +1,6 @@ from collections import deque
import torch
import inspect
-import einops
import k_diffusion.sampling
from modules import prompt_parser, devices, sd_samplers_common
@@ -9,6 +8,7 @@ from modules.shared import opts, state import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
+from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
samplers_k_diffusion = [
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
@@ -87,17 +87,17 @@ class CFGDenoiser(torch.nn.Module): conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
- assert not is_edit_model or all([len(conds) == 1 for conds in conds_list]), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
+ assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
if shared.sd_model.model.conditioning_key == "crossattn-adm":
image_uncond = torch.zeros_like(image_cond)
- make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
+ make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
else:
image_uncond = image_cond
- make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
+ make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
if not is_edit_model:
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
@@ -161,7 +161,7 @@ class CFGDenoiser(torch.nn.Module): fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
- denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
+ denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
cfg_denoised_callback(denoised_params)
devices.test_for_nans(x_out, "unet")
@@ -181,6 +181,10 @@ class CFGDenoiser(torch.nn.Module): if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
+ after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
+ cfg_after_cfg_callback(after_cfg_callback_params)
+ denoised = after_cfg_callback_params.x
+
self.step += 1
return denoised
@@ -198,7 +202,7 @@ class TorchHijack: if hasattr(torch, item):
return getattr(torch, item)
- raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
+ raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def randn_like(self, x):
if self.sampler_noises:
@@ -317,7 +321,7 @@ class KDiffusionSampler: sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
-
+
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
@@ -340,9 +344,9 @@ class KDiffusionSampler: self.model_wrap_cfg.init_latent = x
self.last_latent = x
extra_args={
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
+ 'cond': conditioning,
+ 'image_cond': image_conditioning,
+ 'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}
@@ -375,9 +379,9 @@ class KDiffusionSampler: self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
+ 'cond': conditioning,
+ 'image_cond': image_conditioning,
+ 'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 95262ca3..e4ff2994 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -1,8 +1,5 @@ -import torch -import safetensors.torch import os import collections -from collections import namedtuple from modules import paths, shared, devices, script_callbacks, sd_models import glob from copy import deepcopy diff --git a/modules/shared.py b/modules/shared.py index 6a2b3c2b..07f18b1b 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -1,12 +1,9 @@ -import argparse
import datetime
import json
import os
import sys
import time
-import requests
-from PIL import Image
import gradio as gr
import tqdm
@@ -15,7 +12,8 @@ import modules.memmon import modules.styles
import modules.devices as devices
from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args
-from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir
+from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
+from ldm.models.diffusion.ddpm import LatentDiffusion
demo = None
@@ -201,8 +199,9 @@ interrogator = modules.interrogate.InterrogateModels("interrogate") face_restorers = []
+
class OptionInfo:
- def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None):
+ def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after=''):
self.default = default
self.label = label
self.component = component
@@ -211,9 +210,33 @@ class OptionInfo: self.section = section
self.refresh = refresh
+ self.comment_before = comment_before
+ """HTML text that will be added after label in UI"""
+
+ self.comment_after = comment_after
+ """HTML text that will be added before label in UI"""
+
+ def link(self, label, url):
+ self.comment_before += f"[<a href='{url}' target='_blank'>{label}</a>]"
+ return self
+
+ def js(self, label, js_func):
+ self.comment_before += f"[<a onclick='{js_func}(); return false'>{label}</a>]"
+ return self
+
+ def info(self, info):
+ self.comment_after += f"<span class='info'>({info})</span>"
+ return self
+
+ def needs_restart(self):
+ self.comment_after += " <span class='info'>(requires restart)</span>"
+ return self
+
+
+
def options_section(section_identifier, options_dict):
- for k, v in options_dict.items():
+ for v in options_dict.values():
v.section = section_identifier
return options_dict
@@ -242,7 +265,7 @@ options_templates = {} options_templates.update(options_section(('saving-images', "Saving images/grids"), {
"samples_save": OptionInfo(True, "Always save all generated images"),
"samples_format": OptionInfo('png', 'File format for images'),
- "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs),
+ "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
"save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
"grid_save": OptionInfo(True, "Always save all generated image grids"),
@@ -261,10 +284,10 @@ options_templates.update(options_section(('saving-images', "Saving images/grids" "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
"webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
- "export_for_4chan": OptionInfo(True, "If the saved image file size is above the limit, or its either width or height are above the limit, save a downscaled copy as JPG"),
+ "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"),
"img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
"target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
- "img_max_size_mp": OptionInfo(200, "Maximum image size, in megapixels", gr.Number),
+ "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"),
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
@@ -292,28 +315,26 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
"grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
- "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs),
+ "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
}))
options_templates.update(options_section(('upscaling', "Upscaling"), {
- "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
- "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
- "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
+ "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
+ "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
+ "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
- "SCUNET_tile": OptionInfo(256, "Tile size for SCUNET upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
- "SCUNET_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SCUNET upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}),
}))
options_templates.update(options_section(('face-restoration', "Face restoration"), {
"face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
- "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
+ "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
}))
options_templates.update(options_section(('system', "System"), {
"show_warnings": OptionInfo(False, "Show warnings in console."),
- "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}),
+ "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
"samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
"print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
@@ -338,20 +359,22 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
- "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list),
+ "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
"sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
- "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
+ "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}),
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
- "enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
+ "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
- "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
- "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
+ "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
+ "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP nrtwork; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
- "randn_source": OptionInfo("GPU", "Random number generator source. Changes seeds drastically. Use CPU to produce the same picture across different vidocard vendors.", gr.Radio, {"choices": ["GPU", "CPU"]}),
+ "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different vidocard vendors"),
+ "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
+ "token_merging_ratio_hr": OptionInfo(0.0, "Togen merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
@@ -363,80 +386,87 @@ options_templates.update(options_section(('compatibility', "Compatibility"), { }))
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
- "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
- "interrogate_return_ranks": OptionInfo(False, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."),
- "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
- "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
- "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
- "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file (0 = No limit)"),
+ "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"),
+ "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"),
+ "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
+ "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
+ "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
+ "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"),
"interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
- "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
- "deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
- "deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
- "deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
- "deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"),
+ "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
+ "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"),
+ "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"),
+ "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"),
+ "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"),
}))
options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}),
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"),
- "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"),
- "extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"),
- "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
+ "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"),
+ "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"),
+ "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
+ "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks),
}))
options_templates.update(options_section(('ui', "User interface"), {
+ "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_restart(),
+ "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).needs_restart(),
"return_grid": OptionInfo(True, "Show grid in results for web"),
"return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
"return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
- "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
- "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
- "disable_weights_auto_swap": OptionInfo(True, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
+ "js_modal_lightbox_gamepad": OptionInfo(True, "Navigate image viewer with gamepad"),
+ "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"),
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
- "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"),
- "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row"),
+ "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_restart(),
+ "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_restart(),
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
- "keyedit_delimiters": OptionInfo(".,\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
- "quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"),
- "hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}),
+ "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
+ "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_restart(),
+ "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(),
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
- "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"),
- "localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
- "gradio_theme": OptionInfo("Default", "Gradio theme (requires restart)", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes})
+ "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_restart(),
+}))
+
+options_templates.update(options_section(('infotext', "Infotext"), {
+ "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
+ "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
+ "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
+ "disable_weights_auto_swap": OptionInfo(True, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
}))
options_templates.update(options_section(('ui', "Live previews"), {
"show_progressbar": OptionInfo(True, "Show progressbar"),
"live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
+ "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}),
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
- "show_progress_every_n_steps": OptionInfo(10, "Show new live preview image every N sampling steps. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
- "show_progress_type": OptionInfo("Approx NN", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
+ "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"),
+ "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}).info("Full = slow but pretty; Approx NN = fast but low quality; Approx cheap = super fast but terrible otherwise"),
"live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
- "live_preview_refresh_period": OptionInfo(1000, "Progressbar/preview update period, in milliseconds")
+ "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
- "hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}),
- "eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_restart(),
+ "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
+ "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_min_uncond': OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
- 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
+ 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
+ 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
- 'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}),
+ 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"),
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
}))
@@ -453,6 +483,7 @@ options_templates.update(options_section((None, "Hidden options"), { "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
}))
+
options_templates.update()
@@ -542,6 +573,10 @@ class Options: with open(filename, "r", encoding="utf8") as file:
self.data = json.load(file)
+ # 1.1.1 quicksettings list migration
+ if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
+ self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
+
bad_settings = 0
for k, v in self.data.items():
info = self.data_labels.get(k, None)
@@ -560,7 +595,9 @@ class Options: func()
def dumpjson(self):
- d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
+ d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()}
+ d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None}
+ d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None}
return json.dumps(d)
def add_option(self, key, info):
@@ -571,11 +608,11 @@ class Options: section_ids = {}
settings_items = self.data_labels.items()
- for k, item in settings_items:
+ for _, item in settings_items:
if item.section not in section_ids:
section_ids[item.section] = len(section_ids)
- self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])}
+ self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
def cast_value(self, key, value):
"""casts an arbitrary to the same type as this setting's value with key
@@ -600,13 +637,37 @@ class Options: return value
-
opts = Options()
if os.path.exists(config_filename):
opts.load(config_filename)
+
+class Shared(sys.modules[__name__].__class__):
+ """
+ this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
+ at program startup.
+ """
+
+ sd_model_val = None
+
+ @property
+ def sd_model(self):
+ import modules.sd_models
+
+ return modules.sd_models.model_data.get_sd_model()
+
+ @sd_model.setter
+ def sd_model(self, value):
+ import modules.sd_models
+
+ modules.sd_models.model_data.set_sd_model(value)
+
+
+sd_model: LatentDiffusion = None # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead
+sys.modules[__name__].__class__ = Shared
+
settings_components = None
-"""assinged from ui.py, a mapping on setting anmes to gradio components repsponsible for those settings"""
+"""assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
latent_upscale_default_mode = "Latent"
latent_upscale_modes = {
@@ -620,8 +681,6 @@ latent_upscale_modes = { sd_upscalers = []
-sd_model = None
-
clip_model = None
progress_print_out = sys.stdout
@@ -634,14 +693,19 @@ def reload_gradio_theme(theme_name=None): if not theme_name:
theme_name = opts.gradio_theme
+ default_theme_args = dict(
+ font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
+ font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
+ )
+
if theme_name == "Default":
- gradio_theme = gr.themes.Default()
+ gradio_theme = gr.themes.Default(**default_theme_args)
else:
try:
gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
- except requests.exceptions.ConnectionError:
- print("Can't access HuggingFace Hub, falling back to default Gradio theme")
- gradio_theme = gr.themes.Default()
+ except Exception as e:
+ errors.display(e, "changing gradio theme")
+ gradio_theme = gr.themes.Default(**default_theme_args)
@@ -701,3 +765,20 @@ def html(filename): return file.read()
return ""
+
+
+def walk_files(path, allowed_extensions=None):
+ if not os.path.exists(path):
+ return
+
+ if allowed_extensions is not None:
+ allowed_extensions = set(allowed_extensions)
+
+ for root, _, files in os.walk(path, followlinks=True):
+ for filename in files:
+ if allowed_extensions is not None:
+ _, ext = os.path.splitext(filename)
+ if ext not in allowed_extensions:
+ continue
+
+ yield os.path.join(root, filename)
diff --git a/modules/styles.py b/modules/styles.py index 9ed85991..c22769cf 100644 --- a/modules/styles.py +++ b/modules/styles.py @@ -1,18 +1,9 @@ -# We need this so Python doesn't complain about the unknown StableDiffusionProcessing-typehint at runtime
-from __future__ import annotations
-
import csv
import os
import os.path
import typing
-import collections.abc as abc
-import tempfile
import shutil
-if typing.TYPE_CHECKING:
- # Only import this when code is being type-checked, it doesn't have any effect at runtime
- from .processing import StableDiffusionProcessing
-
class PromptStyle(typing.NamedTuple):
name: str
@@ -74,7 +65,7 @@ class StyleDatabase: def save_styles(self, path: str) -> None:
# Always keep a backup file around
if os.path.exists(path):
- shutil.copy(path, path + ".bak")
+ shutil.copy(path, f"{path}.bak")
fd = os.open(path, os.O_RDWR|os.O_CREAT)
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file:
diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py index 05595323..497568eb 100644 --- a/modules/sub_quadratic_attention.py +++ b/modules/sub_quadratic_attention.py @@ -179,7 +179,7 @@ def efficient_dot_product_attention( chunk_idx, min(query_chunk_size, q_tokens) ) - + summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale) summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk compute_query_chunk_attn: ComputeQueryChunkAttn = partial( @@ -201,14 +201,15 @@ def efficient_dot_product_attention( key=key, value=value, ) - - # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance, - # and pass slices to be mutated, instead of torch.cat()ing the returned slices - res = torch.cat([ - compute_query_chunk_attn( + + res = torch.zeros_like(query) + for i in range(math.ceil(q_tokens / query_chunk_size)): + attn_scores = compute_query_chunk_attn( query=get_query_chunk(i * query_chunk_size), key=key, value=value, - ) for i in range(math.ceil(q_tokens / query_chunk_size)) - ], dim=1) + ) + + res[:, i * query_chunk_size:i * query_chunk_size + attn_scores.shape[1], :] = attn_scores + return res diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index 68e1103c..8e667a4d 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -1,10 +1,8 @@ import cv2
import requests
import os
-from collections import defaultdict
-from math import log, sqrt
import numpy as np
-from PIL import Image, ImageDraw
+from PIL import ImageDraw
GREEN = "#0F0"
BLUE = "#00F"
@@ -12,63 +10,64 @@ RED = "#F00" def crop_image(im, settings):
- """ Intelligently crop an image to the subject matter """
-
- scale_by = 1
- if is_landscape(im.width, im.height):
- scale_by = settings.crop_height / im.height
- elif is_portrait(im.width, im.height):
- scale_by = settings.crop_width / im.width
- elif is_square(im.width, im.height):
- if is_square(settings.crop_width, settings.crop_height):
- scale_by = settings.crop_width / im.width
- elif is_landscape(settings.crop_width, settings.crop_height):
- scale_by = settings.crop_width / im.width
- elif is_portrait(settings.crop_width, settings.crop_height):
- scale_by = settings.crop_height / im.height
-
- im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
- im_debug = im.copy()
-
- focus = focal_point(im_debug, settings)
-
- # take the focal point and turn it into crop coordinates that try to center over the focal
- # point but then get adjusted back into the frame
- y_half = int(settings.crop_height / 2)
- x_half = int(settings.crop_width / 2)
-
- x1 = focus.x - x_half
- if x1 < 0:
- x1 = 0
- elif x1 + settings.crop_width > im.width:
- x1 = im.width - settings.crop_width
-
- y1 = focus.y - y_half
- if y1 < 0:
- y1 = 0
- elif y1 + settings.crop_height > im.height:
- y1 = im.height - settings.crop_height
-
- x2 = x1 + settings.crop_width
- y2 = y1 + settings.crop_height
-
- crop = [x1, y1, x2, y2]
-
- results = []
-
- results.append(im.crop(tuple(crop)))
-
- if settings.annotate_image:
- d = ImageDraw.Draw(im_debug)
- rect = list(crop)
- rect[2] -= 1
- rect[3] -= 1
- d.rectangle(rect, outline=GREEN)
- results.append(im_debug)
- if settings.destop_view_image:
- im_debug.show()
-
- return results
+ """ Intelligently crop an image to the subject matter """
+
+ scale_by = 1
+ if is_landscape(im.width, im.height):
+ scale_by = settings.crop_height / im.height
+ elif is_portrait(im.width, im.height):
+ scale_by = settings.crop_width / im.width
+ elif is_square(im.width, im.height):
+ if is_square(settings.crop_width, settings.crop_height):
+ scale_by = settings.crop_width / im.width
+ elif is_landscape(settings.crop_width, settings.crop_height):
+ scale_by = settings.crop_width / im.width
+ elif is_portrait(settings.crop_width, settings.crop_height):
+ scale_by = settings.crop_height / im.height
+
+
+ im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
+ im_debug = im.copy()
+
+ focus = focal_point(im_debug, settings)
+
+ # take the focal point and turn it into crop coordinates that try to center over the focal
+ # point but then get adjusted back into the frame
+ y_half = int(settings.crop_height / 2)
+ x_half = int(settings.crop_width / 2)
+
+ x1 = focus.x - x_half
+ if x1 < 0:
+ x1 = 0
+ elif x1 + settings.crop_width > im.width:
+ x1 = im.width - settings.crop_width
+
+ y1 = focus.y - y_half
+ if y1 < 0:
+ y1 = 0
+ elif y1 + settings.crop_height > im.height:
+ y1 = im.height - settings.crop_height
+
+ x2 = x1 + settings.crop_width
+ y2 = y1 + settings.crop_height
+
+ crop = [x1, y1, x2, y2]
+
+ results = []
+
+ results.append(im.crop(tuple(crop)))
+
+ if settings.annotate_image:
+ d = ImageDraw.Draw(im_debug)
+ rect = list(crop)
+ rect[2] -= 1
+ rect[3] -= 1
+ d.rectangle(rect, outline=GREEN)
+ results.append(im_debug)
+ if settings.destop_view_image:
+ im_debug.show()
+
+ return results
def focal_point(im, settings):
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
@@ -88,7 +87,7 @@ def focal_point(im, settings): corner_centroid = None
if len(corner_points) > 0:
corner_centroid = centroid(corner_points)
- corner_centroid.weight = settings.corner_points_weight / weight_pref_total
+ corner_centroid.weight = settings.corner_points_weight / weight_pref_total
pois.append(corner_centroid)
entropy_centroid = None
@@ -100,7 +99,7 @@ def focal_point(im, settings): face_centroid = None
if len(face_points) > 0:
face_centroid = centroid(face_points)
- face_centroid.weight = settings.face_points_weight / weight_pref_total
+ face_centroid.weight = settings.face_points_weight / weight_pref_total
pois.append(face_centroid)
average_point = poi_average(pois, settings)
@@ -111,7 +110,7 @@ def focal_point(im, settings): if corner_centroid is not None:
color = BLUE
box = corner_centroid.bounding(max_size * corner_centroid.weight)
- d.text((box[0], box[1]-15), "Edge: %.02f" % corner_centroid.weight, fill=color)
+ d.text((box[0], box[1]-15), f"Edge: {corner_centroid.weight:.02f}", fill=color)
d.ellipse(box, outline=color)
if len(corner_points) > 1:
for f in corner_points:
@@ -119,7 +118,7 @@ def focal_point(im, settings): if entropy_centroid is not None:
color = "#ff0"
box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
- d.text((box[0], box[1]-15), "Entropy: %.02f" % entropy_centroid.weight, fill=color)
+ d.text((box[0], box[1]-15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color)
d.ellipse(box, outline=color)
if len(entropy_points) > 1:
for f in entropy_points:
@@ -127,14 +126,14 @@ def focal_point(im, settings): if face_centroid is not None:
color = RED
box = face_centroid.bounding(max_size * face_centroid.weight)
- d.text((box[0], box[1]-15), "Face: %.02f" % face_centroid.weight, fill=color)
+ d.text((box[0], box[1]-15), f"Face: {face_centroid.weight:.02f}", fill=color)
d.ellipse(box, outline=color)
if len(face_points) > 1:
for f in face_points:
d.rectangle(f.bounding(4), outline=color)
d.ellipse(average_point.bounding(max_size), outline=GREEN)
-
+
return average_point
@@ -185,7 +184,7 @@ def image_face_points(im, settings): try:
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
- except:
+ except Exception:
continue
if len(faces) > 0:
@@ -262,10 +261,11 @@ def image_entropy(im): hist = hist[hist > 0]
return -np.log2(hist / hist.sum()).sum()
+
def centroid(pois):
- x = [poi.x for poi in pois]
- y = [poi.y for poi in pois]
- return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))
+ x = [poi.x for poi in pois]
+ y = [poi.y for poi in pois]
+ return PointOfInterest(sum(x) / len(pois), sum(y) / len(pois))
def poi_average(pois, settings):
@@ -283,59 +283,59 @@ def poi_average(pois, settings): def is_landscape(w, h):
- return w > h
+ return w > h
def is_portrait(w, h):
- return h > w
+ return h > w
def is_square(w, h):
- return w == h
+ return w == h
def download_and_cache_models(dirname):
- download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
- model_file_name = 'face_detection_yunet.onnx'
+ download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
+ model_file_name = 'face_detection_yunet.onnx'
- if not os.path.exists(dirname):
- os.makedirs(dirname)
+ if not os.path.exists(dirname):
+ os.makedirs(dirname)
- cache_file = os.path.join(dirname, model_file_name)
- if not os.path.exists(cache_file):
- print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
- response = requests.get(download_url)
- with open(cache_file, "wb") as f:
- f.write(response.content)
+ cache_file = os.path.join(dirname, model_file_name)
+ if not os.path.exists(cache_file):
+ print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
+ response = requests.get(download_url)
+ with open(cache_file, "wb") as f:
+ f.write(response.content)
- if os.path.exists(cache_file):
- return cache_file
- return None
+ if os.path.exists(cache_file):
+ return cache_file
+ return None
class PointOfInterest:
- def __init__(self, x, y, weight=1.0, size=10):
- self.x = x
- self.y = y
- self.weight = weight
- self.size = size
+ def __init__(self, x, y, weight=1.0, size=10):
+ self.x = x
+ self.y = y
+ self.weight = weight
+ self.size = size
- def bounding(self, size):
- return [
- self.x - size//2,
- self.y - size//2,
- self.x + size//2,
- self.y + size//2
- ]
+ def bounding(self, size):
+ return [
+ self.x - size // 2,
+ self.y - size // 2,
+ self.x + size // 2,
+ self.y + size // 2
+ ]
class Settings:
- def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None):
- self.crop_width = crop_width
- self.crop_height = crop_height
- self.corner_points_weight = corner_points_weight
- self.entropy_points_weight = entropy_points_weight
- self.face_points_weight = face_points_weight
- self.annotate_image = annotate_image
- self.destop_view_image = False
- self.dnn_model_path = dnn_model_path
+ def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None):
+ self.crop_width = crop_width
+ self.crop_height = crop_height
+ self.corner_points_weight = corner_points_weight
+ self.entropy_points_weight = entropy_points_weight
+ self.face_points_weight = face_points_weight
+ self.annotate_image = annotate_image
+ self.destop_view_image = False
+ self.dnn_model_path = dnn_model_path
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index af9fbcf2..b9621fc9 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -72,7 +72,7 @@ class PersonalizedBase(Dataset): except Exception:
continue
- text_filename = os.path.splitext(path)[0] + ".txt"
+ text_filename = f"{os.path.splitext(path)[0]}.txt"
filename = os.path.basename(path)
if os.path.exists(text_filename):
@@ -118,7 +118,7 @@ class PersonalizedBase(Dataset): weight = torch.ones(latent_sample.shape)
else:
weight = None
-
+
if latent_sampling_method == "random":
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight)
else:
@@ -243,4 +243,4 @@ class BatchLoaderRandom(BatchLoader): return self
def collate_wrapper_random(batch):
- return BatchLoaderRandom(batch)
\ No newline at end of file + return BatchLoaderRandom(batch)
diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py index 5593f88c..5858a55f 100644 --- a/modules/textual_inversion/image_embedding.py +++ b/modules/textual_inversion/image_embedding.py @@ -2,10 +2,8 @@ import base64 import json
import numpy as np
import zlib
-from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
-from fonts.ttf import Roboto
+from PIL import Image, ImageDraw, ImageFont
import torch
-from modules.shared import opts
class EmbeddingEncoder(json.JSONEncoder):
@@ -17,7 +15,7 @@ class EmbeddingEncoder(json.JSONEncoder): class EmbeddingDecoder(json.JSONDecoder):
def __init__(self, *args, **kwargs):
- json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
+ json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs)
def object_hook(self, d):
if 'TORCHTENSOR' in d:
@@ -136,11 +134,8 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t image = srcimage.copy()
fontsize = 32
if textfont is None:
- try:
- textfont = ImageFont.truetype(opts.font or Roboto, fontsize)
- textfont = opts.font or Roboto
- except Exception:
- textfont = Roboto
+ from modules.images import get_font
+ textfont = get_font(fontsize)
factor = 1.5
gradient = Image.new('RGBA', (1, image.size[1]), color=(0, 0, 0, 0))
diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index f63fc72f..c56bea45 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -12,7 +12,7 @@ class LearnScheduleIterator: self.it = 0
self.maxit = 0
try:
- for i, pair in enumerate(pairs):
+ for pair in pairs:
if not pair.strip():
continue
tmp = pair.split(':')
@@ -32,8 +32,8 @@ class LearnScheduleIterator: self.maxit += 1
return
assert self.rates
- except (ValueError, AssertionError):
- raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.')
+ except (ValueError, AssertionError) as e:
+ raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') from e
def __iter__(self):
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 4a29151d..a009d8e8 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -1,13 +1,9 @@ import os
from PIL import Image, ImageOps
import math
-import platform
-import sys
import tqdm
-import time
from modules import paths, shared, images, deepbooru
-from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
@@ -63,9 +59,9 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti image.save(os.path.join(params.dstdir, f"{basename}.png"))
if params.preprocess_txt_action == 'prepend' and existing_caption:
- caption = existing_caption + ' ' + caption
+ caption = f"{existing_caption} {caption}"
elif params.preprocess_txt_action == 'append' and existing_caption:
- caption = caption + ' ' + existing_caption
+ caption = f"{caption} {existing_caption}"
elif params.preprocess_txt_action == 'copy' and existing_caption:
caption = existing_caption
@@ -129,7 +125,7 @@ def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, thr default=None
)
return wh and center_crop(image, *wh)
-
+
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
width = process_width
@@ -174,7 +170,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre params.src = filename
existing_caption = None
- existing_caption_filename = os.path.splitext(filename)[0] + '.txt'
+ existing_caption_filename = f"{os.path.splitext(filename)[0]}.txt"
if os.path.exists(existing_caption_filename):
with open(existing_caption_filename, 'r', encoding="utf8") as file:
existing_caption = file.read()
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 379df243..d489ed1e 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -1,7 +1,6 @@ import os
import sys
import traceback
-import inspect
from collections import namedtuple
import torch
@@ -30,7 +29,7 @@ textual_inversion_templates = {} def list_textual_inversion_templates():
textual_inversion_templates.clear()
- for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir):
+ for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir):
for fn in fns:
path = os.path.join(root, fn)
@@ -69,7 +68,7 @@ class Embedding: 'hash': self.checksum(),
'optimizer_state_dict': self.optimizer_state_dict,
}
- torch.save(optimizer_saved_dict, filename + '.optim')
+ torch.save(optimizer_saved_dict, f"{filename}.optim")
def checksum(self):
if self.cached_checksum is not None:
@@ -167,8 +166,7 @@ class EmbeddingDatabase: # textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
- if hasattr(param_dict, '_parameters'):
- param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
+ param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
@@ -199,7 +197,7 @@ class EmbeddingDatabase: if not os.path.isdir(embdir.path):
return
- for root, dirs, fns in os.walk(embdir.path, followlinks=True):
+ for root, _, fns in os.walk(embdir.path, followlinks=True):
for fn in fns:
try:
fullfn = os.path.join(root, fn)
@@ -216,7 +214,7 @@ class EmbeddingDatabase: def load_textual_inversion_embeddings(self, force_reload=False):
if not force_reload:
need_reload = False
- for path, embdir in self.embedding_dirs.items():
+ for embdir in self.embedding_dirs.values():
if embdir.has_changed():
need_reload = True
break
@@ -229,7 +227,7 @@ class EmbeddingDatabase: self.skipped_embeddings.clear()
self.expected_shape = self.get_expected_shape()
- for path, embdir in self.embedding_dirs.items():
+ for embdir in self.embedding_dirs.values():
self.load_from_dir(embdir)
embdir.update()
@@ -325,16 +323,16 @@ def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epo tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step)
def tensorboard_add_scaler(tensorboard_writer, tag, value, step):
- tensorboard_writer.add_scalar(tag=tag,
+ tensorboard_writer.add_scalar(tag=tag,
scalar_value=value, global_step=step)
def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
# Convert a pil image to a torch tensor
img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
- img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0],
+ img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0],
len(pil_image.getbands()))
img_tensor = img_tensor.permute((2, 0, 1))
-
+
tensorboard_writer.add_image(tag, img_tensor, global_step=step)
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"):
@@ -404,7 +402,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st if initial_step >= steps:
shared.state.textinfo = "Model has already been trained beyond specified max steps"
return embedding, filename
-
+
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
@@ -414,7 +412,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st # dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
old_parallel_processing_allowed = shared.parallel_processing_allowed
-
+
if shared.opts.training_enable_tensorboard:
tensorboard_writer = tensorboard_setup(log_directory)
@@ -437,11 +435,11 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
if shared.opts.save_optimizer_state:
optimizer_state_dict = None
- if os.path.exists(filename + '.optim'):
- optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
+ if os.path.exists(f"{filename}.optim"):
+ optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu')
if embedding.checksum() == optimizer_saved_dict.get('hash', None):
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
-
+
if optimizer_state_dict is not None:
optimizer.load_state_dict(optimizer_state_dict)
print("Loaded existing optimizer from checkpoint")
@@ -470,7 +468,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st try:
sd_hijack_checkpoint.add()
- for i in range((steps-initial_step) * gradient_step):
+ for _ in range((steps-initial_step) * gradient_step):
if scheduler.finished:
break
if shared.state.interrupted:
@@ -487,7 +485,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st if clip_grad:
clip_grad_sched.step(embedding.step)
-
+
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if use_weight:
@@ -515,7 +513,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st # go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
-
+
if clip_grad:
clip_grad(embedding.vec, clip_grad_sched.learn_rate)
@@ -599,17 +597,17 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st data = torch.load(last_saved_file)
info.add_text("sd-ti-embedding", embedding_to_b64(data))
- title = "<{}>".format(data.get('name', '???'))
+ title = f"<{data.get('name', '???')}>"
try:
vectorSize = list(data['string_to_param'].values())[0].shape[0]
- except Exception as e:
+ except Exception:
vectorSize = '?'
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.shorthash)
- footer_right = '{}v {}s'.format(vectorSize, steps_done)
+ footer_mid = f'[{checkpoint.shorthash}]'
+ footer_right = f'{vectorSize}v {steps_done}s'
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
captioned_image = insert_image_data_embed(captioned_image, data)
diff --git a/modules/txt2img.py b/modules/txt2img.py index 16841d0f..f022381c 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -1,18 +1,15 @@ import modules.scripts
-from modules import sd_samplers
+from modules import sd_samplers, processing
from modules.generation_parameters_copypaste import create_override_settings_dict
-from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
- StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
import modules.shared as shared
-import modules.processing as processing
from modules.ui import plaintext_to_html
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, override_settings_texts, *args):
override_settings = create_override_settings_dict(override_settings_texts)
- p = StableDiffusionProcessingTxt2Img(
+ p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
outpath_grids=opts.outdir_grids or opts.outdir_txt2img_grids,
@@ -53,7 +50,7 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step processed = modules.scripts.scripts_txt2img.run(p, *args)
if processed is None:
- processed = process_images(p)
+ processed = processing.process_images(p)
p.close()
diff --git a/modules/ui.py b/modules/ui.py index 7b45f131..ff25c4ce 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1,29 +1,23 @@ -import html
import json
-import math
import mimetypes
import os
-import platform
-import random
import sys
-import tempfile
-import time
import traceback
-from functools import partial, reduce
+from functools import reduce
import warnings
import gradio as gr
import gradio.routes
import gradio.utils
import numpy as np
-from PIL import Image, PngImagePlugin
+from PIL import Image, PngImagePlugin # noqa: F401
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
-from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing, progress
-from modules.ui_components import FormRow, FormColumn, FormGroup, ToolButton, FormHTML
+from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave
+from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
from modules.paths import script_path, data_path
-from modules.shared import opts, cmd_opts, restricted_opts
+from modules.shared import opts, cmd_opts
import modules.codeformer_model
import modules.generation_parameters_copypaste as parameters_copypaste
@@ -34,7 +28,6 @@ import modules.shared as shared import modules.styles
import modules.textual_inversion.ui
from modules import prompt_parser
-from modules.images import save_image
from modules.sd_hijack import model_hijack
from modules.sd_samplers import samplers, samplers_for_img2img
from modules.textual_inversion import textual_inversion
@@ -93,16 +86,6 @@ def send_gradio_gallery_to_image(x): return None
return image_from_url_text(x[0])
-def visit(x, func, path=""):
- if hasattr(x, 'children'):
- if isinstance(x, gr.Tabs) and x.elem_id is not None:
- # Tabs element can't have a label, have to use elem_id instead
- func(f"{path}/Tabs@{x.elem_id}", x)
- for c in x.children:
- visit(c, func, path)
- elif x.label is not None:
- func(path + "/" + str(x.label), x)
-
def add_style(name: str, prompt: str, negative_prompt: str):
if name is None:
@@ -166,7 +149,7 @@ def process_interrogate(interrogation_function, mode, ii_input_dir, ii_output_di img = Image.open(image)
filename = os.path.basename(image)
left, _ = os.path.splitext(filename)
- print(interrogation_function(img), file=open(os.path.join(ii_output_dir, left + ".txt"), 'a'))
+ print(interrogation_function(img), file=open(os.path.join(ii_output_dir, f"{left}.txt"), 'a'))
return [gr.update(), None]
@@ -182,29 +165,29 @@ def interrogate_deepbooru(image): def create_seed_inputs(target_interface):
- with FormRow(elem_id=target_interface + '_seed_row', variant="compact"):
- seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed')
+ with FormRow(elem_id=f"{target_interface}_seed_row", variant="compact"):
+ seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=f"{target_interface}_seed")
seed.style(container=False)
- random_seed = ToolButton(random_symbol, elem_id=target_interface + '_random_seed', label='Random seed')
- reuse_seed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_seed', label='Reuse seed')
+ random_seed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_seed", label='Random seed')
+ reuse_seed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_seed", label='Reuse seed')
- seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False)
+ seed_checkbox = gr.Checkbox(label='Extra', elem_id=f"{target_interface}_subseed_show", value=False)
# Components to show/hide based on the 'Extra' checkbox
seed_extras = []
- with FormRow(visible=False, elem_id=target_interface + '_subseed_row') as seed_extra_row_1:
+ with FormRow(visible=False, elem_id=f"{target_interface}_subseed_row") as seed_extra_row_1:
seed_extras.append(seed_extra_row_1)
- subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed')
+ subseed = gr.Number(label='Variation seed', value=-1, elem_id=f"{target_interface}_subseed")
subseed.style(container=False)
- random_subseed = ToolButton(random_symbol, elem_id=target_interface + '_random_subseed')
- reuse_subseed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_subseed')
- subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength')
+ random_subseed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_subseed")
+ reuse_subseed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_subseed")
+ subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=f"{target_interface}_subseed_strength")
with FormRow(visible=False) as seed_extra_row_2:
seed_extras.append(seed_extra_row_2)
- seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=target_interface + '_seed_resize_from_w')
- seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=target_interface + '_seed_resize_from_h')
+ seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=f"{target_interface}_seed_resize_from_w")
+ seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=f"{target_interface}_seed_resize_from_h")
random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed])
random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed])
@@ -246,7 +229,7 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info: all_seeds = gen_info.get('all_seeds', [-1])
res = all_seeds[index if 0 <= index < len(all_seeds) else 0]
- except json.decoder.JSONDecodeError as e:
+ except json.decoder.JSONDecodeError:
if gen_info_string != '':
print("Error parsing JSON generation info:", file=sys.stderr)
print(gen_info_string, file=sys.stderr)
@@ -423,7 +406,7 @@ def create_sampler_and_steps_selection(choices, tabname): def ordered_ui_categories():
user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder.split(","))}
- for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)):
+ for _, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)):
yield category
@@ -736,8 +719,8 @@ def create_ui(): with gr.TabItem('Batch', id='batch', elem_id="img2img_batch_tab") as tab_batch:
hidden = '<br>Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else ''
gr.HTML(
- f"<p style='padding-bottom: 1em;' class=\"text-gray-500\">Process images in a directory on the same machine where the server is running." +
- f"<br>Use an empty output directory to save pictures normally instead of writing to the output directory." +
+ "<p style='padding-bottom: 1em;' class=\"text-gray-500\">Process images in a directory on the same machine where the server is running." +
+ "<br>Use an empty output directory to save pictures normally instead of writing to the output directory." +
f"<br>Add inpaint batch mask directory to enable inpaint batch processing."
f"{hidden}</p>"
)
@@ -746,7 +729,6 @@ def create_ui(): img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir")
img2img_tabs = [tab_img2img, tab_sketch, tab_inpaint, tab_inpaint_color, tab_inpaint_upload, tab_batch]
- img2img_image_inputs = [init_img, sketch, init_img_with_mask, inpaint_color_sketch]
for i, tab in enumerate(img2img_tabs):
tab.select(fn=lambda tabnum=i: tabnum, inputs=[], outputs=[img2img_selected_tab])
@@ -765,7 +747,7 @@ def create_ui(): )
button.click(
fn=lambda: None,
- _js="switch_to_"+name.replace(" ", "_"),
+ _js=f"switch_to_{name.replace(' ', '_')}",
inputs=[],
outputs=[],
)
@@ -828,7 +810,7 @@ def create_ui(): with FormGroup():
with FormRow():
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
- image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit")
+ image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=False)
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength")
elif category == "seed":
@@ -1189,7 +1171,7 @@ def create_ui(): process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight")
process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight")
process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
-
+
with gr.Column(visible=False) as process_multicrop_col:
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
with gr.Row():
@@ -1201,7 +1183,7 @@ def create_ui(): with gr.Row():
process_multicrop_objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="train_process_multicrop_objective")
process_multicrop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="train_process_multicrop_threshold")
-
+
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
@@ -1230,7 +1212,7 @@ def create_ui(): )
def get_textual_inversion_template_names():
- return sorted([x for x in textual_inversion.textual_inversion_templates])
+ return sorted(textual_inversion.textual_inversion_templates)
with gr.Tab(label="Train", id="train"):
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
@@ -1238,13 +1220,13 @@ def create_ui(): train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name")
- train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()])
- create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name")
+ train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=sorted(shared.hypernetworks))
+ create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted(shared.hypernetworks)}, "refresh_train_hypernetwork_name")
with FormRow():
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate")
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate")
-
+
with FormRow():
clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"])
clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False)
@@ -1290,8 +1272,8 @@ def create_ui(): with gr.Column(elem_id='ti_gallery_container'):
ti_output = gr.Text(elem_id="ti_output", value="", show_label=False)
- ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(columns=4)
- ti_progress = gr.HTML(elem_id="ti_progress", value="")
+ gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(columns=4)
+ gr.HTML(elem_id="ti_progress", value="")
ti_outcome = gr.HTML(elem_id="ti_error", value="")
create_embedding.click(
@@ -1462,23 +1444,25 @@ def create_ui(): elif t == bool:
comp = gr.Checkbox
else:
- raise Exception(f'bad options item type: {str(t)} for key {key}')
+ raise Exception(f'bad options item type: {t} for key {key}')
- elem_id = "setting_"+key
+ elem_id = f"setting_{key}"
if info.refresh is not None:
if is_quicksettings:
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
- create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
+ create_refresh_button(res, info.refresh, info.component_args, f"refresh_{key}")
else:
with FormRow():
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
- create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
+ create_refresh_button(res, info.refresh, info.component_args, f"refresh_{key}")
else:
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
return res
+ loadsave = ui_loadsave.UiLoadsave(cmd_opts.ui_config_file)
+
components = []
component_dict = {}
shared.settings_components = component_dict
@@ -1525,7 +1509,7 @@ def create_ui(): result = gr.HTML(elem_id="settings_result")
- quicksettings_names = [x.strip() for x in opts.quicksettings.split(",")]
+ quicksettings_names = opts.quicksettings_list
quicksettings_names = {x: i for i, x in enumerate(quicksettings_names) if x != 'quicksettings'}
quicksettings_list = []
@@ -1545,7 +1529,7 @@ def create_ui(): current_tab.__exit__()
gr.Group()
- current_tab = gr.TabItem(elem_id="settings_{}".format(elem_id), label=text)
+ current_tab = gr.TabItem(elem_id=f"settings_{elem_id}", label=text)
current_tab.__enter__()
current_row = gr.Column(variant='compact')
current_row.__enter__()
@@ -1566,7 +1550,10 @@ def create_ui(): current_row.__exit__()
current_tab.__exit__()
- with gr.TabItem("Actions", id="actions"):
+ with gr.TabItem("Defaults", id="defaults", elem_id="settings_tab_defaults"):
+ loadsave.create_ui()
+
+ with gr.TabItem("Actions", id="actions", elem_id="settings_tab_actions"):
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
download_localization = gr.Button(value='Download localization template', elem_id="download_localization")
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies")
@@ -1574,11 +1561,11 @@ def create_ui(): unload_sd_model = gr.Button(value='Unload SD checkpoint to free VRAM', elem_id="sett_unload_sd_model")
reload_sd_model = gr.Button(value='Reload the last SD checkpoint back into VRAM', elem_id="sett_reload_sd_model")
- with gr.TabItem("Licenses", id="licenses"):
+ with gr.TabItem("Licenses", id="licenses", elem_id="settings_tab_licenses"):
gr.HTML(shared.html("licenses.html"), elem_id="licenses")
gr.Button(value="Show all pages", elem_id="settings_show_all_pages")
-
+
def unload_sd_weights():
modules.sd_models.unload_model_weights()
@@ -1639,7 +1626,7 @@ def create_ui(): (extras_interface, "Extras", "extras"),
(pnginfo_interface, "PNG Info", "pnginfo"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
- (train_interface, "Train", "ti"),
+ (train_interface, "Train", "train"),
]
interfaces += script_callbacks.ui_tabs_callback()
@@ -1654,7 +1641,7 @@ def create_ui(): with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Row(elem_id="quicksettings", variant="compact"):
- for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
+ for _i, k, _item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
component = create_setting_component(k, is_quicksettings=True)
component_dict[k] = component
@@ -1664,11 +1651,21 @@ def create_ui(): for interface, label, ifid in interfaces:
if label in shared.opts.hidden_tabs:
continue
- with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid):
+ with gr.TabItem(label, id=ifid, elem_id=f"tab_{ifid}"):
interface.render()
+ for interface, _label, ifid in interfaces:
+ if ifid in ["extensions", "settings"]:
+ continue
+
+ loadsave.add_block(interface, ifid)
+
+ loadsave.add_component(f"webui/Tabs@{tabs.elem_id}", tabs)
+
+ loadsave.setup_ui()
+
if os.path.exists(os.path.join(script_path, "notification.mp3")):
- audio_notification = gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False)
+ gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False)
footer = shared.html("footer.html")
footer = footer.format(versions=versions_html())
@@ -1681,7 +1678,7 @@ def create_ui(): outputs=[text_settings, result],
)
- for i, k, item in quicksettings_list:
+ for _i, k, _item in quicksettings_list:
component = component_dict[k]
info = opts.data_labels[k]
@@ -1693,11 +1690,9 @@ def create_ui(): show_progress=info.refresh is not None,
)
- text_settings.change(
- fn=lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit"),
- inputs=[],
- outputs=[image_cfg_scale],
- )
+ update_image_cfg_scale_visibility = lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit")
+ text_settings.change(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
+ demo.load(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
button_set_checkpoint = gr.Button('Change checkpoint', elem_id='change_checkpoint', visible=False)
button_set_checkpoint.click(
@@ -1757,97 +1752,8 @@ def create_ui(): ]
)
- ui_config_file = cmd_opts.ui_config_file
- ui_settings = {}
- settings_count = len(ui_settings)
- error_loading = False
-
- try:
- if os.path.exists(ui_config_file):
- with open(ui_config_file, "r", encoding="utf8") as file:
- ui_settings = json.load(file)
- except Exception:
- error_loading = True
- print("Error loading settings:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
-
- def loadsave(path, x):
- def apply_field(obj, field, condition=None, init_field=None):
- key = path + "/" + field
-
- if getattr(obj, 'custom_script_source', None) is not None:
- key = 'customscript/' + obj.custom_script_source + '/' + key
-
- if getattr(obj, 'do_not_save_to_config', False):
- return
-
- saved_value = ui_settings.get(key, None)
- if saved_value is None:
- ui_settings[key] = getattr(obj, field)
- elif condition and not condition(saved_value):
- pass
-
- # this warning is generally not useful;
- # print(f'Warning: Bad ui setting value: {key}: {saved_value}; Default value "{getattr(obj, field)}" will be used instead.')
- else:
- setattr(obj, field, saved_value)
- if init_field is not None:
- init_field(saved_value)
-
- if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown, ToolButton] and x.visible:
- apply_field(x, 'visible')
-
- if type(x) == gr.Slider:
- apply_field(x, 'value')
- apply_field(x, 'minimum')
- apply_field(x, 'maximum')
- apply_field(x, 'step')
-
- if type(x) == gr.Radio:
- apply_field(x, 'value', lambda val: val in x.choices)
-
- if type(x) == gr.Checkbox:
- apply_field(x, 'value')
-
- if type(x) == gr.Textbox:
- apply_field(x, 'value')
-
- if type(x) == gr.Number:
- apply_field(x, 'value')
-
- if type(x) == gr.Dropdown:
- def check_dropdown(val):
- if getattr(x, 'multiselect', False):
- return all([value in x.choices for value in val])
- else:
- return val in x.choices
-
- apply_field(x, 'value', check_dropdown, getattr(x, 'init_field', None))
-
- def check_tab_id(tab_id):
- tab_items = list(filter(lambda e: isinstance(e, gr.TabItem), x.children))
- if type(tab_id) == str:
- tab_ids = [t.id for t in tab_items]
- return tab_id in tab_ids
- elif type(tab_id) == int:
- return tab_id >= 0 and tab_id < len(tab_items)
- else:
- return False
-
- if type(x) == gr.Tabs:
- apply_field(x, 'selected', check_tab_id)
-
- visit(txt2img_interface, loadsave, "txt2img")
- visit(img2img_interface, loadsave, "img2img")
- visit(extras_interface, loadsave, "extras")
- visit(modelmerger_interface, loadsave, "modelmerger")
- visit(train_interface, loadsave, "train")
-
- loadsave(f"webui/Tabs@{tabs.elem_id}", tabs)
-
- if not error_loading and (not os.path.exists(ui_config_file) or settings_count != len(ui_settings)):
- with open(ui_config_file, "w", encoding="utf8") as file:
- json.dump(ui_settings, file, indent=4)
+ loadsave.dump_defaults()
+ demo.ui_loadsave = loadsave
# Required as a workaround for change() event not triggering when loading values from ui-config.json
interp_description.value = update_interp_description(interp_method.value)
@@ -1865,12 +1771,11 @@ def webpath(fn): def javascript_html():
- script_js = os.path.join(script_path, "script.js")
- head = f'<script type="text/javascript" src="{webpath(script_js)}"></script>\n'
+ # Ensure localization is in `window` before scripts
+ head = f'<script type="text/javascript">{localization.localization_js(shared.opts.localization)}</script>\n'
- inline = f"{localization.localization_js(shared.opts.localization)};"
- if cmd_opts.theme is not None:
- inline += f"set_theme('{cmd_opts.theme}');"
+ script_js = os.path.join(script_path, "script.js")
+ head += f'<script type="text/javascript" src="{webpath(script_js)}"></script>\n'
for script in modules.scripts.list_scripts("javascript", ".js"):
head += f'<script type="text/javascript" src="{webpath(script.path)}"></script>\n'
@@ -1878,7 +1783,8 @@ def javascript_html(): for script in modules.scripts.list_scripts("javascript", ".mjs"):
head += f'<script type="module" src="{webpath(script.path)}"></script>\n'
- head += f'<script type="text/javascript">{inline}</script>\n'
+ if cmd_opts.theme:
+ head += f'<script type="text/javascript">set_theme(\"{cmd_opts.theme}\");</script>\n'
return head
@@ -1925,7 +1831,7 @@ def versions_html(): python_version = ".".join([str(x) for x in sys.version_info[0:3]])
commit = launch.commit_hash()
- short_commit = commit[0:8]
+ tag = launch.git_tag()
if shared.xformers_available:
import xformers
@@ -1934,15 +1840,31 @@ def versions_html(): xformers_version = "N/A"
return f"""
+version: <a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/{commit}">{tag}</a>
+ •
python: <span title="{sys.version}">{python_version}</span>
- •
+ •
torch: {getattr(torch, '__long_version__',torch.__version__)}
- •
+ •
xformers: {xformers_version}
- •
+ •
gradio: {gr.__version__}
- •
-commit: <a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/{commit}">{short_commit}</a>
- •
+ •
checkpoint: <a id="sd_checkpoint_hash">N/A</a>
"""
+
+
+def setup_ui_api(app):
+ from pydantic import BaseModel, Field
+ from typing import List
+
+ class QuicksettingsHint(BaseModel):
+ name: str = Field(title="Name of the quicksettings field")
+ label: str = Field(title="Label of the quicksettings field")
+
+ def quicksettings_hint():
+ return [QuicksettingsHint(name=k, label=v.label) for k, v in opts.data_labels.items()]
+
+ app.add_api_route("/internal/quicksettings-hint", quicksettings_hint, methods=["GET"], response_model=List[QuicksettingsHint])
+
+ app.add_api_route("/internal/ping", lambda: {}, methods=["GET"])
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py index 99ac8756..af497733 100644 --- a/modules/ui_extensions.py +++ b/modules/ui_extensions.py @@ -61,7 +61,8 @@ def save_config_state(name): if not name:
name = "Config"
current_config_state["name"] = name
- filename = os.path.join(config_states_dir, datetime.now().strftime("%Y_%m_%d-%H_%M_%S") + "_" + name + ".json")
+ timestamp = datetime.now().strftime('%Y_%m_%d-%H_%M_%S')
+ filename = os.path.join(config_states_dir, f"{timestamp}_{name}.json")
print(f"Saving backup of webui/extension state to {filename}.")
with open(filename, "w", encoding="utf-8") as f:
json.dump(current_config_state, f)
@@ -466,7 +467,7 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=" <td>{html.escape(description)}<p class="info"><span class="date_added">Added: {html.escape(added)}</span></p></td>
<td>{install_code}</td>
</tr>
-
+
"""
for tag in [x for x in extension_tags if x not in tags]:
@@ -489,7 +490,7 @@ def create_ui(): config_states.list_config_states()
with gr.Blocks(analytics_enabled=False) as ui:
- with gr.Tabs(elem_id="tabs_extensions") as tabs:
+ with gr.Tabs(elem_id="tabs_extensions"):
with gr.TabItem("Installed", id="installed"):
with gr.Row(elem_id="extensions_installed_top"):
@@ -534,9 +535,9 @@ def create_ui(): hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"])
sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order", ], type="index")
- with gr.Row():
+ with gr.Row():
search_extensions_text = gr.Text(label="Search").style(container=False)
-
+
install_result = gr.HTML()
available_extensions_table = gr.HTML()
diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index aa2f5d1b..0baccf56 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -1,4 +1,3 @@ -import glob
import os.path
import urllib.parse
from pathlib import Path
@@ -27,11 +26,11 @@ def register_page(page): def fetch_file(filename: str = ""):
from starlette.responses import FileResponse
- if not any([Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs]):
+ if not any(Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs):
raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.")
ext = os.path.splitext(filename)[1].lower()
- if ext not in (".png", ".jpg", ".webp"):
+ if ext not in (".png", ".jpg", ".jpeg", ".webp"):
raise ValueError(f"File cannot be fetched: {filename}. Only png and jpg and webp.")
# would profit from returning 304
@@ -69,7 +68,9 @@ class ExtraNetworksPage: pass
def link_preview(self, filename):
- return "./sd_extra_networks/thumb?filename=" + urllib.parse.quote(filename.replace('\\', '/')) + "&mtime=" + str(os.path.getmtime(filename))
+ quoted_filename = urllib.parse.quote(filename.replace('\\', '/'))
+ mtime = os.path.getmtime(filename)
+ return f"./sd_extra_networks/thumb?filename={quoted_filename}&mtime={mtime}"
def search_terms_from_path(self, filename, possible_directories=None):
abspath = os.path.abspath(filename)
@@ -89,19 +90,22 @@ class ExtraNetworksPage: subdirs = {}
for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]:
- for x in glob.glob(os.path.join(parentdir, '**/*'), recursive=True):
- if not os.path.isdir(x):
- continue
+ for root, dirs, _ in os.walk(parentdir, followlinks=True):
+ for dirname in dirs:
+ x = os.path.join(root, dirname)
- subdir = os.path.abspath(x)[len(parentdir):].replace("\\", "/")
- while subdir.startswith("/"):
- subdir = subdir[1:]
+ if not os.path.isdir(x):
+ continue
- is_empty = len(os.listdir(x)) == 0
- if not is_empty and not subdir.endswith("/"):
- subdir = subdir + "/"
+ subdir = os.path.abspath(x)[len(parentdir):].replace("\\", "/")
+ while subdir.startswith("/"):
+ subdir = subdir[1:]
- subdirs[subdir] = 1
+ is_empty = len(os.listdir(x)) == 0
+ if not is_empty and not subdir.endswith("/"):
+ subdir = subdir + "/"
+
+ subdirs[subdir] = 1
if subdirs:
subdirs = {"": 1, **subdirs}
@@ -157,8 +161,20 @@ class ExtraNetworksPage: if metadata:
metadata_button = f"<div class='metadata-button' title='Show metadata' onclick='extraNetworksRequestMetadata(event, {json.dumps(self.name)}, {json.dumps(item['name'])})'></div>"
+ local_path = ""
+ filename = item.get("filename", "")
+ for reldir in self.allowed_directories_for_previews():
+ absdir = os.path.abspath(reldir)
+
+ if filename.startswith(absdir):
+ local_path = filename[len(absdir):]
+
+ # if this is true, the item must not be show in the default view, and must instead only be
+ # shown when searching for it
+ serach_only = "/." in local_path or "\\." in local_path
+
args = {
- "style": f"'{height}{width}{background_image}'",
+ "style": f"'display: none; {height}{width}{background_image}'",
"prompt": item.get("prompt", None),
"tabname": json.dumps(tabname),
"local_preview": json.dumps(item["local_preview"]),
@@ -168,6 +184,7 @@ class ExtraNetworksPage: "save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"',
"search_term": item.get("search_term", ""),
"metadata_button": metadata_button,
+ "serach_only": " search_only" if serach_only else "",
}
return self.card_page.format(**args)
@@ -177,7 +194,7 @@ class ExtraNetworksPage: Find a preview PNG for a given path (without extension) and call link_preview on it.
"""
- preview_extensions = ["png", "jpg", "webp"]
+ preview_extensions = ["png", "jpg", "jpeg", "webp"]
if shared.opts.samples_format not in preview_extensions:
preview_extensions.append(shared.opts.samples_format)
@@ -209,6 +226,11 @@ def intialize(): class ExtraNetworksUi:
def __init__(self):
self.pages = None
+ """gradio HTML components related to extra networks' pages"""
+
+ self.page_contents = None
+ """HTML content of the above; empty initially, filled when extra pages have to be shown"""
+
self.stored_extra_pages = None
self.button_save_preview = None
@@ -236,17 +258,22 @@ def pages_in_preferred_order(pages): def create_ui(container, button, tabname):
ui = ExtraNetworksUi()
ui.pages = []
+ ui.pages_contents = []
ui.stored_extra_pages = pages_in_preferred_order(extra_pages.copy())
ui.tabname = tabname
- with gr.Tabs(elem_id=tabname+"_extra_tabs") as tabs:
+ with gr.Tabs(elem_id=tabname+"_extra_tabs"):
for page in ui.stored_extra_pages:
- with gr.Tab(page.title, id=page.title.lower().replace(" ", "_")):
+ page_id = page.title.lower().replace(" ", "_")
- page_elem = gr.HTML(page.create_html(ui.tabname))
+ with gr.Tab(page.title, id=page_id):
+ elem_id = f"{tabname}_{page_id}_cards_html"
+ page_elem = gr.HTML('', elem_id=elem_id)
ui.pages.append(page_elem)
- filter = gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False)
+ page_elem.change(fn=lambda: None, _js='function(){applyExtraNetworkFilter(' + json.dumps(tabname) + '); return []}', inputs=[], outputs=[])
+
+ gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False)
button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh")
ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False)
@@ -254,19 +281,22 @@ def create_ui(container, button, tabname): def toggle_visibility(is_visible):
is_visible = not is_visible
- return is_visible, gr.update(visible=is_visible), gr.update(variant=("secondary-down" if is_visible else "secondary"))
+
+ if is_visible and not ui.pages_contents:
+ refresh()
+
+ return is_visible, gr.update(visible=is_visible), gr.update(variant=("secondary-down" if is_visible else "secondary")), *ui.pages_contents
state_visible = gr.State(value=False)
- button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container, button])
+ button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container, button, *ui.pages])
def refresh():
- res = []
-
for pg in ui.stored_extra_pages:
pg.refresh()
- res.append(pg.create_html(ui.tabname))
- return res
+ ui.pages_contents = [pg.create_html(ui.tabname) for pg in ui.stored_extra_pages]
+
+ return ui.pages_contents
button_refresh.click(fn=refresh, inputs=[], outputs=ui.pages)
@@ -296,7 +326,7 @@ def setup_ui(ui, gallery): is_allowed = False
for extra_page in ui.stored_extra_pages:
- if any([path_is_parent(x, filename) for x in extra_page.allowed_directories_for_previews()]):
+ if any(path_is_parent(x, filename) for x in extra_page.allowed_directories_for_previews()):
is_allowed = True
break
diff --git a/modules/ui_loadsave.py b/modules/ui_loadsave.py new file mode 100644 index 00000000..728fec9e --- /dev/null +++ b/modules/ui_loadsave.py @@ -0,0 +1,208 @@ +import json
+import os
+
+import gradio as gr
+
+from modules import errors
+from modules.ui_components import ToolButton
+
+
+class UiLoadsave:
+ """allows saving and restorig default values for gradio components"""
+
+ def __init__(self, filename):
+ self.filename = filename
+ self.ui_settings = {}
+ self.component_mapping = {}
+ self.error_loading = False
+ self.finalized_ui = False
+
+ self.ui_defaults_view = None
+ self.ui_defaults_apply = None
+ self.ui_defaults_review = None
+
+ try:
+ if os.path.exists(self.filename):
+ self.ui_settings = self.read_from_file()
+ except Exception as e:
+ self.error_loading = True
+ errors.display(e, "loading settings")
+
+ def add_component(self, path, x):
+ """adds component to the registry of tracked components"""
+
+ assert not self.finalized_ui
+
+ def apply_field(obj, field, condition=None, init_field=None):
+ key = f"{path}/{field}"
+
+ if getattr(obj, 'custom_script_source', None) is not None:
+ key = f"customscript/{obj.custom_script_source}/{key}"
+
+ if getattr(obj, 'do_not_save_to_config', False):
+ return
+
+ saved_value = self.ui_settings.get(key, None)
+ if saved_value is None:
+ self.ui_settings[key] = getattr(obj, field)
+ elif condition and not condition(saved_value):
+ pass
+ else:
+ setattr(obj, field, saved_value)
+ if init_field is not None:
+ init_field(saved_value)
+
+ if field == 'value' and key not in self.component_mapping:
+ self.component_mapping[key] = x
+
+ if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown, ToolButton] and x.visible:
+ apply_field(x, 'visible')
+
+ if type(x) == gr.Slider:
+ apply_field(x, 'value')
+ apply_field(x, 'minimum')
+ apply_field(x, 'maximum')
+ apply_field(x, 'step')
+
+ if type(x) == gr.Radio:
+ apply_field(x, 'value', lambda val: val in x.choices)
+
+ if type(x) == gr.Checkbox:
+ apply_field(x, 'value')
+
+ if type(x) == gr.Textbox:
+ apply_field(x, 'value')
+
+ if type(x) == gr.Number:
+ apply_field(x, 'value')
+
+ if type(x) == gr.Dropdown:
+ def check_dropdown(val):
+ if getattr(x, 'multiselect', False):
+ return all(value in x.choices for value in val)
+ else:
+ return val in x.choices
+
+ apply_field(x, 'value', check_dropdown, getattr(x, 'init_field', None))
+
+ def check_tab_id(tab_id):
+ tab_items = list(filter(lambda e: isinstance(e, gr.TabItem), x.children))
+ if type(tab_id) == str:
+ tab_ids = [t.id for t in tab_items]
+ return tab_id in tab_ids
+ elif type(tab_id) == int:
+ return 0 <= tab_id < len(tab_items)
+ else:
+ return False
+
+ if type(x) == gr.Tabs:
+ apply_field(x, 'selected', check_tab_id)
+
+ def add_block(self, x, path=""):
+ """adds all components inside a gradio block x to the registry of tracked components"""
+
+ if hasattr(x, 'children'):
+ if isinstance(x, gr.Tabs) and x.elem_id is not None:
+ # Tabs element can't have a label, have to use elem_id instead
+ self.add_component(f"{path}/Tabs@{x.elem_id}", x)
+ for c in x.children:
+ self.add_block(c, path)
+ elif x.label is not None:
+ self.add_component(f"{path}/{x.label}", x)
+
+ def read_from_file(self):
+ with open(self.filename, "r", encoding="utf8") as file:
+ return json.load(file)
+
+ def write_to_file(self, current_ui_settings):
+ with open(self.filename, "w", encoding="utf8") as file:
+ json.dump(current_ui_settings, file, indent=4)
+
+ def dump_defaults(self):
+ """saves default values to a file unless tjhe file is present and there was an error loading default values at start"""
+
+ if self.error_loading and os.path.exists(self.filename):
+ return
+
+ self.write_to_file(self.ui_settings)
+
+ def iter_changes(self, current_ui_settings, values):
+ """
+ given a dictionary with defaults from a file and current values from gradio elements, returns
+ an iterator over tuples of values that are not the same between the file and the current;
+ tuple contents are: path, old value, new value
+ """
+
+ for (path, component), new_value in zip(self.component_mapping.items(), values):
+ old_value = current_ui_settings.get(path)
+
+ choices = getattr(component, 'choices', None)
+ if isinstance(new_value, int) and choices:
+ if new_value >= len(choices):
+ continue
+
+ new_value = choices[new_value]
+
+ if new_value == old_value:
+ continue
+
+ if old_value is None and new_value == '' or new_value == []:
+ continue
+
+ yield path, old_value, new_value
+
+ def ui_view(self, *values):
+ text = ["<table><thead><tr><th>Path</th><th>Old value</th><th>New value</th></thead><tbody>"]
+
+ for path, old_value, new_value in self.iter_changes(self.read_from_file(), values):
+ if old_value is None:
+ old_value = "<span class='ui-defaults-none'>None</span>"
+
+ text.append(f"<tr><td>{path}</td><td>{old_value}</td><td>{new_value}</td></tr>")
+
+ if len(text) == 1:
+ text.append("<tr><td colspan=3>No changes</td></tr>")
+
+ text.append("</tbody>")
+ return "".join(text)
+
+ def ui_apply(self, *values):
+ num_changed = 0
+
+ current_ui_settings = self.read_from_file()
+
+ for path, _, new_value in self.iter_changes(current_ui_settings.copy(), values):
+ num_changed += 1
+ current_ui_settings[path] = new_value
+
+ if num_changed == 0:
+ return "No changes."
+
+ self.write_to_file(current_ui_settings)
+
+ return f"Wrote {num_changed} changes."
+
+ def create_ui(self):
+ """creates ui elements for editing defaults UI, without adding any logic to them"""
+
+ gr.HTML(
+ f"This page allows you to change default values in UI elements on other tabs.<br />"
+ f"Make your changes, press 'View changes' to review the changed default values,<br />"
+ f"then press 'Apply' to write them to {self.filename}.<br />"
+ f"New defaults will apply after you restart the UI.<br />"
+ )
+
+ with gr.Row():
+ self.ui_defaults_view = gr.Button(value='View changes', elem_id="ui_defaults_view", variant="secondary")
+ self.ui_defaults_apply = gr.Button(value='Apply', elem_id="ui_defaults_apply", variant="primary")
+
+ self.ui_defaults_review = gr.HTML("")
+
+ def setup_ui(self):
+ """adds logic to elements created with create_ui; all add_block class must be made before this"""
+
+ assert not self.finalized_ui
+ self.finalized_ui = True
+
+ self.ui_defaults_view.click(fn=self.ui_view, inputs=list(self.component_mapping.values()), outputs=[self.ui_defaults_review])
+ self.ui_defaults_apply.click(fn=self.ui_apply, inputs=list(self.component_mapping.values()), outputs=[self.ui_defaults_review])
diff --git a/modules/ui_postprocessing.py b/modules/ui_postprocessing.py index f25639e5..c7dc1154 100644 --- a/modules/ui_postprocessing.py +++ b/modules/ui_postprocessing.py @@ -1,5 +1,5 @@ import gradio as gr
-from modules import scripts_postprocessing, scripts, shared, gfpgan_model, codeformer_model, ui_common, postprocessing, call_queue
+from modules import scripts, shared, ui_common, postprocessing, call_queue
import modules.generation_parameters_copypaste as parameters_copypaste
diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py index 21945235..f05049e1 100644 --- a/modules/ui_tempdir.py +++ b/modules/ui_tempdir.py @@ -23,7 +23,7 @@ def register_tmp_file(gradio, filename): def check_tmp_file(gradio, filename):
if hasattr(gradio, 'temp_file_sets'):
- return any([filename in fileset for fileset in gradio.temp_file_sets])
+ return any(filename in fileset for fileset in gradio.temp_file_sets)
if hasattr(gradio, 'temp_dirs'):
return any(Path(temp_dir).resolve() in Path(filename).resolve().parents for temp_dir in gradio.temp_dirs)
@@ -36,7 +36,7 @@ def save_pil_to_file(pil_image, dir=None): if already_saved_as and os.path.isfile(already_saved_as):
register_tmp_file(shared.demo, already_saved_as)
- file_obj = Savedfile(already_saved_as)
+ file_obj = Savedfile(f'{already_saved_as}?{os.path.getmtime(already_saved_as)}')
return file_obj
if shared.opts.temp_dir != "":
@@ -72,7 +72,7 @@ def cleanup_tmpdr(): if temp_dir == "" or not os.path.isdir(temp_dir):
return
- for root, dirs, files in os.walk(temp_dir, topdown=False):
+ for root, _, files in os.walk(temp_dir, topdown=False):
for name in files:
_, extension = os.path.splitext(name)
if extension != ".png":
diff --git a/modules/upscaler.py b/modules/upscaler.py index e2eaa730..8acb6e96 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -2,8 +2,6 @@ import os from abc import abstractmethod import PIL -import numpy as np -import torch from PIL import Image import modules.shared @@ -43,9 +41,9 @@ class Upscaler: os.makedirs(self.model_path, exist_ok=True) try: - import cv2 + import cv2 # noqa: F401 self.can_tile = True - except: + except Exception: pass @abstractmethod @@ -57,7 +55,7 @@ class Upscaler: dest_w = int(img.width * scale) dest_h = int(img.height * scale) - for i in range(3): + for _ in range(3): shape = (img.width, img.height) img = self.do_upscale(img, selected_model) diff --git a/modules/xlmr.py b/modules/xlmr.py index beab3fdf..a407a3ca 100644 --- a/modules/xlmr.py +++ b/modules/xlmr.py @@ -1,4 +1,4 @@ -from transformers import BertPreTrainedModel,BertModel,BertConfig +from transformers import BertPreTrainedModel, BertConfig import torch.nn as nn import torch from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig @@ -28,7 +28,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel): config_class = BertSeriesConfig def __init__(self, config=None, **kargs): - # modify initialization for autoloading + # modify initialization for autoloading if config is None: config = XLMRobertaConfig() config.attention_probs_dropout_prob= 0.1 @@ -74,7 +74,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel): text["attention_mask"] = torch.tensor( text['attention_mask']).to(device) features = self(**text) - return features['projection_state'] + return features['projection_state'] def forward( self, @@ -134,4 +134,4 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel): class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation): base_model_prefix = 'roberta' - config_class= RobertaSeriesConfig
\ No newline at end of file + config_class= RobertaSeriesConfig |