diff options
author | AngelBottomless <aria1th@naver.com> | 2023-11-16 09:43:16 +0000 |
---|---|---|
committer | AngelBottomless <aria1th@naver.com> | 2023-11-16 09:43:16 +0000 |
commit | bcfaf3979a9f93e37c418b58c75b02d9570b4354 (patch) | |
tree | 07e5ff505eda5b94c63f75438460a50ae9d954fb /modules | |
parent | af45872fdb8a66ffd6a405d99120e0bacbb4a170 (diff) | |
download | stable-diffusion-webui-gfx803-bcfaf3979a9f93e37c418b58c75b02d9570b4354.tar.gz stable-diffusion-webui-gfx803-bcfaf3979a9f93e37c418b58c75b02d9570b4354.tar.bz2 stable-diffusion-webui-gfx803-bcfaf3979a9f93e37c418b58c75b02d9570b4354.zip |
convert/add hypertile options
Diffstat (limited to 'modules')
-rw-r--r-- | modules/hypertile.py | 36 | ||||
-rw-r--r-- | modules/processing.py | 21 | ||||
-rw-r--r-- | modules/shared_options.py | 6 |
3 files changed, 53 insertions, 10 deletions
diff --git a/modules/hypertile.py b/modules/hypertile.py index 32d8604c..fee24a8c 100644 --- a/modules/hypertile.py +++ b/modules/hypertile.py @@ -332,3 +332,39 @@ def split_attention( module.forward = module._original_forward_hypertile del module._original_forward_hypertile del module._split_sizes_hypertile + +def hypertile_context_vae(model:nn.Module, aspect_ratio:float, tile_size:int, opts): + """ + Returns context manager for VAE + """ + enabled = not opts.hypertile_split_vae_attn + swap_size = opts.hypertile_swap_size_vae + max_depth = opts.hypertile_max_depth_vae + tile_size_max = opts.hypertile_max_tile_vae + return split_attention( + model, + aspect_ratio=aspect_ratio, + tile_size=min(tile_size, tile_size_max), + swap_size=swap_size, + disable=not enabled, + max_depth=max_depth, + is_sdxl=False, + ) + +def hypertile_context_unet(model:nn.Module, aspect_ratio:float, tile_size:int, opts, is_sdxl:bool): + """ + Returns context manager for U-Net + """ + enabled = not opts.hypertile_split_unet_attn + swap_size = opts.hypertile_swap_size_unet + max_depth = opts.hypertile_max_depth_unet + tile_size_max = opts.hypertile_max_tile_unet + return split_attention( + model, + aspect_ratio=aspect_ratio, + tile_size=min(tile_size, tile_size_max), + swap_size=swap_size, + disable=not enabled, + max_depth=max_depth, + is_sdxl=is_sdxl, + )
\ No newline at end of file diff --git a/modules/processing.py b/modules/processing.py index e19a09a3..c622ff33 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -24,7 +24,7 @@ from modules.shared import opts, cmd_opts, state import modules.shared as shared
import modules.paths as paths
import modules.face_restoration
-from modules.hypertile import split_attention, set_hypertile_seed, largest_tile_size_available
+from modules.hypertile import set_hypertile_seed, largest_tile_size_available, hypertile_context_unet, hypertile_context_vae
import modules.images as images
import modules.styles
import modules.sd_models as sd_models
@@ -874,7 +874,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: else:
if opts.sd_vae_decode_method != 'Full':
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
- with split_attention(p.sd_model.first_stage_model, aspect_ratio = p.width / p.height, tile_size=min(largest_tile_size_available(p.width, p.height), 128), disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl):
+ with hypertile_context_unet(p.sd_model.first_stage_model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
x_samples_ddim = torch.stack(x_samples_ddim).float()
@@ -1144,8 +1144,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): aspect_ratio = self.width / self.height
x = self.rng.next()
tile_size = largest_tile_size_available(self.width, self.height)
- with split_attention(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 128), swap_size=1, disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl):
- with split_attention(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 256), swap_size=2, disable=not shared.opts.hypertile_split_unet_attn, is_sdxl=shared.sd_model.is_sdxl):
+ with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
+ with hypertile_context_unet(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
devices.torch_gc()
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
del x
@@ -1153,7 +1153,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return samples
if self.latent_scale_mode is None:
- with split_attention(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 256), swap_size=1, disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl):
+ with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32)
else:
decoded_samples = None
@@ -1245,15 +1245,16 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if self.scripts is not None:
self.scripts.before_hr(self)
tile_size = largest_tile_size_available(target_width, target_height)
- with split_attention(self.sd_model.first_stage_model, aspect_ratio=target_width / target_height, tile_size=min(tile_size, 256), swap_size=1, disable=not opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl):
- with split_attention(self.sd_model.model, aspect_ratio=target_width / target_height, tile_size=min(tile_size, 256), swap_size=3, max_depth=1,scale_depth=True, disable=not opts.hypertile_split_unet_attn, is_sdxl=shared.sd_model.is_sdxl):
+ aspect_ratio = self.width / self.height
+ with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
+ with hypertile_context_unet(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
self.sampler = None
devices.torch_gc()
- with split_attention(self.sd_model.first_stage_model, aspect_ratio=target_width / target_height, tile_size=min(tile_size, 256), swap_size=1, disable=not opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl):
+ with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
self.is_hr_pass = False
@@ -1533,8 +1534,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): x *= self.initial_noise_multiplier
aspect_ratio = self.width / self.height
tile_size = largest_tile_size_available(self.width, self.height)
- with split_attention(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 128), swap_size=1, disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl):
- with split_attention(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 256), swap_size=2, disable=not shared.opts.hypertile_split_unet_attn, is_sdxl=shared.sd_model.is_sdxl):
+ with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
+ with hypertile_context_unet(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
devices.torch_gc()
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
diff --git a/modules/shared_options.py b/modules/shared_options.py index d9650265..28a48906 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -202,6 +202,12 @@ options_templates.update(options_section(('optimizations', "Optimizations"), { "batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"),
"hypertile_split_unet_attn" : OptionInfo(False, "Split attention in Unet with HyperTile").link("Github", "https://github.com/tfernd/HyperTile").info("improves performance; changes behavior, but deterministic"),
"hypertile_split_vae_attn": OptionInfo(False, "Split attention in VAE with HyperTile").link("Github", "https://github.com/tfernd/HyperTile").info("improves performance; changes behavior, but deterministic"),
+ "hypertile_max_depth_vae" : OptionInfo(3, "Max depth for VAE HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
+ "hypertile_max_depth_unet" : OptionInfo(3, "Max depth for Unet HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
+ "hypertile_max_tile_vae" : OptionInfo(128, "Max tile size for VAE HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).link("Github", "https://github.com/tfernd/HyperTile"),
+ "hypertile_max_tile_unet" : OptionInfo(256, "Max tile size for Unet HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).link("Github", "https://github.com/tfernd/HyperTile"),
+ "hypertile_swap_size_unet": OptionInfo(3, "Swap size for Unet HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
+ "hypertile_swap_size_vae": OptionInfo(3, "Swap size for VAE HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
|