diff options
author | continue-revolution <continuerevolution@gmail.com> | 2024-01-07 18:35:35 +0000 |
---|---|---|
committer | continue-revolution <continuerevolution@gmail.com> | 2024-01-07 18:35:35 +0000 |
commit | f56cebf5ba24313447b2204c3f804379767201c9 (patch) | |
tree | 8055a1233e467d9bc423c5a4da830d68a8ef0939 /modules | |
parent | 425507bd10c55f1f804eb5015db74520668f46f9 (diff) | |
download | stable-diffusion-webui-gfx803-f56cebf5ba24313447b2204c3f804379767201c9.tar.gz stable-diffusion-webui-gfx803-f56cebf5ba24313447b2204c3f804379767201c9.tar.bz2 stable-diffusion-webui-gfx803-f56cebf5ba24313447b2204c3f804379767201c9.zip |
add self instead
Diffstat (limited to 'modules')
-rw-r--r-- | modules/script_callbacks.py | 6 | ||||
-rw-r--r-- | modules/sd_samplers_cfg_denoiser.py | 2 |
2 files changed, 4 insertions, 4 deletions
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index bb47c18d..053dfc96 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -41,7 +41,7 @@ class ExtraNoiseParams: class CFGDenoiserParams:
- def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond, p):
+ def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond, denoiser):
self.x = x
"""Latent image representation in the process of being denoised"""
@@ -63,8 +63,8 @@ class CFGDenoiserParams: self.text_uncond = text_uncond
""" Encoder hidden states of text conditioning from negative prompt"""
- self.p = p
- """StableDiffusionProcessing object with processing parameters"""
+ self.denoiser = denoiser
+ """Current CFGDenoiser object with processing parameters"""
class CFGDenoisedParams:
diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py index f4ded6bd..6d76aa96 100644 --- a/modules/sd_samplers_cfg_denoiser.py +++ b/modules/sd_samplers_cfg_denoiser.py @@ -146,7 +146,7 @@ class CFGDenoiser(torch.nn.Module): sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
- denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond, self.p)
+ denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond, self)
cfg_denoiser_callback(denoiser_params)
x_in = denoiser_params.x
image_cond_in = denoiser_params.image_cond
|