diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-11-26 08:18:49 +0000 |
---|---|---|
committer | AUTOMATIC1111 <16777216c@gmail.com> | 2023-11-26 08:18:49 +0000 |
commit | f85b74763d4501542d8ea80e99db4111d39b4776 (patch) | |
tree | d1dcaba1eb653b10b987141a689a1aae6861dde4 /modules | |
parent | fd8674a4bcdde86854e019ec74aa3112191dfd26 (diff) | |
parent | d2e0c1ca132f4f0d98b77397a9f353d4ad8e7c4b (diff) | |
download | stable-diffusion-webui-gfx803-f85b74763d4501542d8ea80e99db4111d39b4776.tar.gz stable-diffusion-webui-gfx803-f85b74763d4501542d8ea80e99db4111d39b4776.tar.bz2 stable-diffusion-webui-gfx803-f85b74763d4501542d8ea80e99db4111d39b4776.zip |
Merge branch 'hypertile-in-sample' into dev
Diffstat (limited to 'modules')
-rw-r--r-- | modules/hypertile.py | 371 | ||||
-rw-r--r-- | modules/processing.py | 37 | ||||
-rw-r--r-- | modules/shared_options.py | 8 |
3 files changed, 13 insertions, 403 deletions
diff --git a/modules/hypertile.py b/modules/hypertile.py deleted file mode 100644 index be898fce..00000000 --- a/modules/hypertile.py +++ /dev/null @@ -1,371 +0,0 @@ -""" -Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE -Warn : The patch works well only if the input image has a width and height that are multiples of 128 -Author : @tfernd Github : https://github.com/tfernd/HyperTile -""" - -from __future__ import annotations -from typing import Callable -from typing_extensions import Literal - -import logging -from functools import wraps, cache -from contextlib import contextmanager - -import math -import torch.nn as nn -import random - -from einops import rearrange - -# TODO add SD-XL layers -DEPTH_LAYERS = { - 0: [ - # SD 1.5 U-Net (diffusers) - "down_blocks.0.attentions.0.transformer_blocks.0.attn1", - "down_blocks.0.attentions.1.transformer_blocks.0.attn1", - "up_blocks.3.attentions.0.transformer_blocks.0.attn1", - "up_blocks.3.attentions.1.transformer_blocks.0.attn1", - "up_blocks.3.attentions.2.transformer_blocks.0.attn1", - # SD 1.5 U-Net (ldm) - "input_blocks.1.1.transformer_blocks.0.attn1", - "input_blocks.2.1.transformer_blocks.0.attn1", - "output_blocks.9.1.transformer_blocks.0.attn1", - "output_blocks.10.1.transformer_blocks.0.attn1", - "output_blocks.11.1.transformer_blocks.0.attn1", - # SD 1.5 VAE - "decoder.mid_block.attentions.0", - "decoder.mid.attn_1", - ], - 1: [ - # SD 1.5 U-Net (diffusers) - "down_blocks.1.attentions.0.transformer_blocks.0.attn1", - "down_blocks.1.attentions.1.transformer_blocks.0.attn1", - "up_blocks.2.attentions.0.transformer_blocks.0.attn1", - "up_blocks.2.attentions.1.transformer_blocks.0.attn1", - "up_blocks.2.attentions.2.transformer_blocks.0.attn1", - # SD 1.5 U-Net (ldm) - "input_blocks.4.1.transformer_blocks.0.attn1", - "input_blocks.5.1.transformer_blocks.0.attn1", - "output_blocks.6.1.transformer_blocks.0.attn1", - "output_blocks.7.1.transformer_blocks.0.attn1", - "output_blocks.8.1.transformer_blocks.0.attn1", - ], - 2: [ - # SD 1.5 U-Net (diffusers) - "down_blocks.2.attentions.0.transformer_blocks.0.attn1", - "down_blocks.2.attentions.1.transformer_blocks.0.attn1", - "up_blocks.1.attentions.0.transformer_blocks.0.attn1", - "up_blocks.1.attentions.1.transformer_blocks.0.attn1", - "up_blocks.1.attentions.2.transformer_blocks.0.attn1", - # SD 1.5 U-Net (ldm) - "input_blocks.7.1.transformer_blocks.0.attn1", - "input_blocks.8.1.transformer_blocks.0.attn1", - "output_blocks.3.1.transformer_blocks.0.attn1", - "output_blocks.4.1.transformer_blocks.0.attn1", - "output_blocks.5.1.transformer_blocks.0.attn1", - ], - 3: [ - # SD 1.5 U-Net (diffusers) - "mid_block.attentions.0.transformer_blocks.0.attn1", - # SD 1.5 U-Net (ldm) - "middle_block.1.transformer_blocks.0.attn1", - ], -} -# XL layers, thanks for GitHub@gel-crabs for the help -DEPTH_LAYERS_XL = { - 0: [ - # SD 1.5 U-Net (diffusers) - "down_blocks.0.attentions.0.transformer_blocks.0.attn1", - "down_blocks.0.attentions.1.transformer_blocks.0.attn1", - "up_blocks.3.attentions.0.transformer_blocks.0.attn1", - "up_blocks.3.attentions.1.transformer_blocks.0.attn1", - "up_blocks.3.attentions.2.transformer_blocks.0.attn1", - # SD 1.5 U-Net (ldm) - "input_blocks.4.1.transformer_blocks.0.attn1", - "input_blocks.5.1.transformer_blocks.0.attn1", - "output_blocks.3.1.transformer_blocks.0.attn1", - "output_blocks.4.1.transformer_blocks.0.attn1", - "output_blocks.5.1.transformer_blocks.0.attn1", - # SD 1.5 VAE - "decoder.mid_block.attentions.0", - "decoder.mid.attn_1", - ], - 1: [ - # SD 1.5 U-Net (diffusers) - #"down_blocks.1.attentions.0.transformer_blocks.0.attn1", - #"down_blocks.1.attentions.1.transformer_blocks.0.attn1", - #"up_blocks.2.attentions.0.transformer_blocks.0.attn1", - #"up_blocks.2.attentions.1.transformer_blocks.0.attn1", - #"up_blocks.2.attentions.2.transformer_blocks.0.attn1", - # SD 1.5 U-Net (ldm) - "input_blocks.4.1.transformer_blocks.1.attn1", - "input_blocks.5.1.transformer_blocks.1.attn1", - "output_blocks.3.1.transformer_blocks.1.attn1", - "output_blocks.4.1.transformer_blocks.1.attn1", - "output_blocks.5.1.transformer_blocks.1.attn1", - "input_blocks.7.1.transformer_blocks.0.attn1", - "input_blocks.8.1.transformer_blocks.0.attn1", - "output_blocks.0.1.transformer_blocks.0.attn1", - "output_blocks.1.1.transformer_blocks.0.attn1", - "output_blocks.2.1.transformer_blocks.0.attn1", - "input_blocks.7.1.transformer_blocks.1.attn1", - "input_blocks.8.1.transformer_blocks.1.attn1", - "output_blocks.0.1.transformer_blocks.1.attn1", - "output_blocks.1.1.transformer_blocks.1.attn1", - "output_blocks.2.1.transformer_blocks.1.attn1", - "input_blocks.7.1.transformer_blocks.2.attn1", - "input_blocks.8.1.transformer_blocks.2.attn1", - "output_blocks.0.1.transformer_blocks.2.attn1", - "output_blocks.1.1.transformer_blocks.2.attn1", - "output_blocks.2.1.transformer_blocks.2.attn1", - "input_blocks.7.1.transformer_blocks.3.attn1", - "input_blocks.8.1.transformer_blocks.3.attn1", - "output_blocks.0.1.transformer_blocks.3.attn1", - "output_blocks.1.1.transformer_blocks.3.attn1", - "output_blocks.2.1.transformer_blocks.3.attn1", - "input_blocks.7.1.transformer_blocks.4.attn1", - "input_blocks.8.1.transformer_blocks.4.attn1", - "output_blocks.0.1.transformer_blocks.4.attn1", - "output_blocks.1.1.transformer_blocks.4.attn1", - "output_blocks.2.1.transformer_blocks.4.attn1", - "input_blocks.7.1.transformer_blocks.5.attn1", - "input_blocks.8.1.transformer_blocks.5.attn1", - "output_blocks.0.1.transformer_blocks.5.attn1", - "output_blocks.1.1.transformer_blocks.5.attn1", - "output_blocks.2.1.transformer_blocks.5.attn1", - "input_blocks.7.1.transformer_blocks.6.attn1", - "input_blocks.8.1.transformer_blocks.6.attn1", - "output_blocks.0.1.transformer_blocks.6.attn1", - "output_blocks.1.1.transformer_blocks.6.attn1", - "output_blocks.2.1.transformer_blocks.6.attn1", - "input_blocks.7.1.transformer_blocks.7.attn1", - "input_blocks.8.1.transformer_blocks.7.attn1", - "output_blocks.0.1.transformer_blocks.7.attn1", - "output_blocks.1.1.transformer_blocks.7.attn1", - "output_blocks.2.1.transformer_blocks.7.attn1", - "input_blocks.7.1.transformer_blocks.8.attn1", - "input_blocks.8.1.transformer_blocks.8.attn1", - "output_blocks.0.1.transformer_blocks.8.attn1", - "output_blocks.1.1.transformer_blocks.8.attn1", - "output_blocks.2.1.transformer_blocks.8.attn1", - "input_blocks.7.1.transformer_blocks.9.attn1", - "input_blocks.8.1.transformer_blocks.9.attn1", - "output_blocks.0.1.transformer_blocks.9.attn1", - "output_blocks.1.1.transformer_blocks.9.attn1", - "output_blocks.2.1.transformer_blocks.9.attn1", - ], - 2: [ - # SD 1.5 U-Net (diffusers) - "mid_block.attentions.0.transformer_blocks.0.attn1", - # SD 1.5 U-Net (ldm) - "middle_block.1.transformer_blocks.0.attn1", - "middle_block.1.transformer_blocks.1.attn1", - "middle_block.1.transformer_blocks.2.attn1", - "middle_block.1.transformer_blocks.3.attn1", - "middle_block.1.transformer_blocks.4.attn1", - "middle_block.1.transformer_blocks.5.attn1", - "middle_block.1.transformer_blocks.6.attn1", - "middle_block.1.transformer_blocks.7.attn1", - "middle_block.1.transformer_blocks.8.attn1", - "middle_block.1.transformer_blocks.9.attn1", - ], - 3 : [] # TODO - separate layers for SD-XL -} - - -RNG_INSTANCE = random.Random() - -def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int: - """ - Returns a random divisor of value that - x * min_value <= value - if max_options is 1, the behavior is deterministic - """ - min_value = min(min_value, value) - - # All big divisors of value (inclusive) - divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order - - ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order - - idx = RNG_INSTANCE.randint(0, len(ns) - 1) - - return ns[idx] - -def set_hypertile_seed(seed: int) -> None: - RNG_INSTANCE.seed(seed) - -def largest_tile_size_available(width:int, height:int) -> int: - """ - Calculates the largest tile size available for a given width and height - Tile size is always a power of 2 - """ - gcd = math.gcd(width, height) - largest_tile_size_available = 1 - while gcd % (largest_tile_size_available * 2) == 0: - largest_tile_size_available *= 2 - return largest_tile_size_available - -def iterative_closest_divisors(hw:int, aspect_ratio:float) -> tuple[int, int]: - """ - Finds h and w such that h*w = hw and h/w = aspect_ratio - We check all possible divisors of hw and return the closest to the aspect ratio - """ - divisors = [i for i in range(2, hw + 1) if hw % i == 0] # all divisors of hw - pairs = [(i, hw // i) for i in divisors] # all pairs of divisors of hw - ratios = [w/h for h, w in pairs] # all ratios of pairs of divisors of hw - closest_ratio = min(ratios, key=lambda x: abs(x - aspect_ratio)) # closest ratio to aspect_ratio - closest_pair = pairs[ratios.index(closest_ratio)] # closest pair of divisors to aspect_ratio - return closest_pair - -@cache -def find_hw_candidates(hw:int, aspect_ratio:float) -> tuple[int, int]: - """ - Finds h and w such that h*w = hw and h/w = aspect_ratio - """ - h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio)) - # find h and w such that h*w = hw and h/w = aspect_ratio - if h * w != hw: - w_candidate = hw / h - # check if w is an integer - if not w_candidate.is_integer(): - h_candidate = hw / w - # check if h is an integer - if not h_candidate.is_integer(): - return iterative_closest_divisors(hw, aspect_ratio) - else: - h = int(h_candidate) - else: - w = int(w_candidate) - return h, w - -@contextmanager -def split_attention( - layer: nn.Module, - /, - aspect_ratio: float, # width/height - tile_size: int = 128, # 128 for VAE - swap_size: int = 1, # 1 for VAE - *, - disable: bool = False, - max_depth: Literal[0, 1, 2, 3] = 0, # ! Try 0 or 1 - scale_depth: bool = True, # scale the tile-size depending on the depth - is_sdxl: bool = False, # is the model SD-XL -): - # Hijacks AttnBlock from ldm and Attention from diffusers - - if disable: - logging.info(f"Attention for {layer.__class__.__qualname__} not splitted") - yield - return - - latent_tile_size = max(128, tile_size) // 8 - - def self_attn_forward(forward: Callable, depth: int, layer_name: str, module: nn.Module) -> Callable: - @wraps(forward) - def wrapper(*args, **kwargs): - x = args[0] - - # VAE - if x.ndim == 4: - b, c, h, w = x.shape - - nh = random_divisor(h, latent_tile_size, swap_size) - nw = random_divisor(w, latent_tile_size, swap_size) - - if nh * nw > 1: - x = rearrange(x, "b c (nh h) (nw w) -> (b nh nw) c h w", nh=nh, nw=nw) # split into nh * nw tiles - - out = forward(x, *args[1:], **kwargs) - - if nh * nw > 1: - out = rearrange(out, "(b nh nw) c h w -> b c (nh h) (nw w)", nh=nh, nw=nw) - - # U-Net - else: - hw: int = x.size(1) - h, w = find_hw_candidates(hw, aspect_ratio) - assert h * w == hw, f"Invalid aspect ratio {aspect_ratio} for input of shape {x.shape}, hw={hw}, h={h}, w={w}" - - factor = 2**depth if scale_depth else 1 - nh = random_divisor(h, latent_tile_size * factor, swap_size) - nw = random_divisor(w, latent_tile_size * factor, swap_size) - - module._split_sizes_hypertile.append((nh, nw)) # type: ignore - - if nh * nw > 1: - x = rearrange(x, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw) - - out = forward(x, *args[1:], **kwargs) - - if nh * nw > 1: - out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw) - out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw) - - return out - - return wrapper - - # Handle hijacking the forward method and recovering afterwards - try: - if is_sdxl: - layers = DEPTH_LAYERS_XL - else: - layers = DEPTH_LAYERS - for depth in range(max_depth + 1): - for layer_name, module in layer.named_modules(): - if any(layer_name.endswith(try_name) for try_name in layers[depth]): - # print input shape for debugging - logging.debug(f"HyperTile hijacking attention layer at depth {depth}: {layer_name}") - # hijack - module._original_forward_hypertile = module.forward - module.forward = self_attn_forward(module.forward, depth, layer_name, module) - module._split_sizes_hypertile = [] - yield - finally: - for layer_name, module in layer.named_modules(): - # remove hijack - if hasattr(module, "_original_forward_hypertile"): - if module._split_sizes_hypertile: - logging.debug(f"layer {layer_name} splitted with ({module._split_sizes_hypertile})") - # recover - module.forward = module._original_forward_hypertile - del module._original_forward_hypertile - del module._split_sizes_hypertile - -def hypertile_context_vae(model:nn.Module, aspect_ratio:float, tile_size:int, opts): - """ - Returns context manager for VAE - """ - enabled = opts.hypertile_split_vae_attn - swap_size = opts.hypertile_swap_size_vae - max_depth = opts.hypertile_max_depth_vae - tile_size_max = opts.hypertile_max_tile_vae - return split_attention( - model, - aspect_ratio=aspect_ratio, - tile_size=min(tile_size, tile_size_max), - swap_size=swap_size, - disable=not enabled, - max_depth=max_depth, - is_sdxl=False, - ) - -def hypertile_context_unet(model:nn.Module, aspect_ratio:float, tile_size:int, opts, is_sdxl:bool): - """ - Returns context manager for U-Net - """ - enabled = opts.hypertile_split_unet_attn - swap_size = opts.hypertile_swap_size_unet - max_depth = opts.hypertile_max_depth_unet - tile_size_max = opts.hypertile_max_tile_unet - return split_attention( - model, - aspect_ratio=aspect_ratio, - tile_size=min(tile_size, tile_size_max), - swap_size=swap_size, - disable=not enabled, - max_depth=max_depth, - is_sdxl=is_sdxl, - ) diff --git a/modules/processing.py b/modules/processing.py index 36c2be5e..ac58ef86 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -24,7 +24,6 @@ from modules.shared import opts, cmd_opts, state import modules.shared as shared
import modules.paths as paths
import modules.face_restoration
-from modules.hypertile import set_hypertile_seed, largest_tile_size_available, hypertile_context_unet, hypertile_context_vae
import modules.images as images
import modules.styles
import modules.sd_models as sd_models
@@ -861,8 +860,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: p.comment(comment)
p.extra_generation_params.update(model_hijack.extra_generation_params)
- set_hypertile_seed(p.seed)
- # add batch size + hypertile status to information to reproduce the run
+
if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
@@ -874,8 +872,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: else:
if opts.sd_vae_decode_method != 'Full':
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
- with hypertile_context_vae(p.sd_model.first_stage_model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), opts=shared.opts):
- x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
+ x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
x_samples_ddim = torch.stack(x_samples_ddim).float()
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
@@ -1141,25 +1138,23 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
- aspect_ratio = self.width / self.height
+
x = self.rng.next()
- tile_size = largest_tile_size_available(self.width, self.height)
- with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
- with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
del x
+
if not self.enable_hr:
return samples
devices.torch_gc()
if self.latent_scale_mode is None:
- with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
- decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32)
+ decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32)
else:
decoded_samples = None
with sd_models.SkipWritingToConfig():
sd_models.reload_model_weights(info=self.hr_checkpoint_info)
+
return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts)
def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts):
@@ -1244,18 +1239,15 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if self.scripts is not None:
self.scripts.before_hr(self)
- tile_size = largest_tile_size_available(target_width, target_height)
- aspect_ratio = self.width / self.height
- with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
- with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
- samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
+
+ samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
self.sampler = None
devices.torch_gc()
- with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
- decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
+
+ decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
self.is_hr_pass = False
return decoded_samples
@@ -1532,11 +1524,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): if self.initial_noise_multiplier != 1.0:
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
x *= self.initial_noise_multiplier
- aspect_ratio = self.width / self.height
- tile_size = largest_tile_size_available(self.width, self.height)
- with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts):
- with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts):
- samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
+
+ samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask
diff --git a/modules/shared_options.py b/modules/shared_options.py index 1f860d8c..9bcd7914 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -201,14 +201,6 @@ options_templates.update(options_section(('optimizations', "Optimizations"), { "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
"persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"),
"batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"),
- "hypertile_split_unet_attn" : OptionInfo(False, "Split attention in Unet with HyperTile").link("Github", "https://github.com/tfernd/HyperTile").info("improves performance; changes behavior, but deterministic"),
- "hypertile_split_vae_attn": OptionInfo(False, "Split attention in VAE with HyperTile").link("Github", "https://github.com/tfernd/HyperTile").info("improves performance; changes behavior, but deterministic"),
- "hypertile_max_depth_vae" : OptionInfo(3, "Max depth for VAE HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
- "hypertile_max_depth_unet" : OptionInfo(3, "Max depth for Unet HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
- "hypertile_max_tile_vae" : OptionInfo(128, "Max tile size for VAE HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).link("Github", "https://github.com/tfernd/HyperTile"),
- "hypertile_max_tile_unet" : OptionInfo(256, "Max tile size for Unet HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).link("Github", "https://github.com/tfernd/HyperTile"),
- "hypertile_swap_size_unet": OptionInfo(3, "Swap size for Unet HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
- "hypertile_swap_size_vae": OptionInfo(3, "Swap size for VAE HyperTile hijack", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}).link("Github", "https://github.com/tfernd/HyperTile"),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
|