aboutsummaryrefslogtreecommitdiffstats
path: root/modules
diff options
context:
space:
mode:
authorBruno Seoane <brunoseoaneamarillo@gmail.com>2022-11-04 19:40:13 +0000
committerBruno Seoane <brunoseoaneamarillo@gmail.com>2022-11-04 19:40:13 +0000
commitfd66f669ea25bad1409aec87ef14b8417009bddc (patch)
tree42348fb16d018920f6d7fc5970f6c54803ba5e72 /modules
parent31db25ecc8d9c3996e7bac00cc616ee12557b7d3 (diff)
parent89722fb5e4eda2adc5d3a6abf8babf8a58e80d69 (diff)
downloadstable-diffusion-webui-gfx803-fd66f669ea25bad1409aec87ef14b8417009bddc.tar.gz
stable-diffusion-webui-gfx803-fd66f669ea25bad1409aec87ef14b8417009bddc.tar.bz2
stable-diffusion-webui-gfx803-fd66f669ea25bad1409aec87ef14b8417009bddc.zip
Merge branch 'master' of https://github.com/AUTOMATIC1111/stable-diffusion-webui
Diffstat (limited to 'modules')
-rw-r--r--modules/api/api.py98
-rw-r--r--modules/api/models.py80
-rw-r--r--modules/esrgan_model.py17
-rw-r--r--modules/extras.py3
-rw-r--r--modules/hypernetworks/hypernetwork.py36
-rw-r--r--modules/images.py5
-rw-r--r--modules/img2img.py5
-rw-r--r--modules/interrogate.py4
-rw-r--r--modules/masking.py2
-rw-r--r--modules/modelloader.py3
-rw-r--r--modules/processing.py67
-rw-r--r--modules/script_callbacks.py100
-rw-r--r--modules/scripts.py56
-rw-r--r--modules/sd_models.py48
-rw-r--r--modules/sd_samplers.py11
-rw-r--r--modules/sd_vae.py207
-rw-r--r--modules/shared.py55
-rw-r--r--modules/textual_inversion/textual_inversion.py10
-rw-r--r--modules/textual_inversion/ui.py7
-rw-r--r--modules/txt2img.py2
-rw-r--r--modules/ui.py59
-rw-r--r--modules/ui_extensions.py2
-rw-r--r--modules/upscaler.py17
23 files changed, 719 insertions, 175 deletions
diff --git a/modules/api/api.py b/modules/api/api.py
index 6c06d449..a49f3755 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -1,14 +1,18 @@
+import base64
+import io
import time
import uvicorn
+from threading import Lock
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
-from fastapi import APIRouter, Depends, HTTPException
+from fastapi import APIRouter, Depends, FastAPI, HTTPException
import modules.shared as shared
-from modules import devices
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.sd_samplers import all_samplers
from modules.extras import run_extras, run_pnginfo
-
+from modules.sd_models import checkpoints_list
+from modules.realesrgan_model import get_realesrgan_models
+from typing import List
def upscaler_to_index(name: str):
try:
@@ -29,8 +33,14 @@ def setUpscalers(req: dict):
return reqDict
+def encode_pil_to_base64(image):
+ buffer = io.BytesIO()
+ image.save(buffer, format="png")
+ return base64.b64encode(buffer.getvalue())
+
+
class Api:
- def __init__(self, app, queue_lock):
+ def __init__(self, app: FastAPI, queue_lock: Lock):
self.router = APIRouter()
self.app = app
self.queue_lock = queue_lock
@@ -40,6 +50,19 @@ class Api:
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
+ self.app.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
+ self.app.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
+ self.app.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
+ self.app.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
+ self.app.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
+ self.app.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
+ self.app.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
+ self.app.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
+ self.app.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
+ self.app.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
+ self.app.add_api_route("/sdapi/v1/prompt-styles", self.get_promp_styles, methods=["GET"], response_model=List[PromptStyleItem])
+ self.app.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
+ self.app.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
@@ -170,12 +193,79 @@ class Api:
progress = min(progress, 1)
+ shared.state.set_current_image()
+
current_image = None
if shared.state.current_image and not req.skip_current_image:
current_image = encode_pil_to_base64(shared.state.current_image)
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image)
+ def interruptapi(self):
+ shared.state.interrupt()
+
+ return {}
+
+ def get_config(self):
+ options = {}
+ for key in shared.opts.data.keys():
+ metadata = shared.opts.data_labels.get(key)
+ if(metadata is not None):
+ options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
+ else:
+ options.update({key: shared.opts.data.get(key, None)})
+
+ return options
+
+ def set_config(self, req: OptionsModel):
+ reqDict = vars(req)
+ for o in reqDict:
+ setattr(shared.opts, o, reqDict[o])
+
+ shared.opts.save(shared.config_filename)
+ return
+
+ def get_cmd_flags(self):
+ return vars(shared.cmd_opts)
+
+ def get_samplers(self):
+ return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers]
+
+ def get_upscalers(self):
+ upscalers = []
+
+ for upscaler in shared.sd_upscalers:
+ u = upscaler.scaler
+ upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url})
+
+ return upscalers
+
+ def get_sd_models(self):
+ return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": x.config} for x in checkpoints_list.values()]
+
+ def get_hypernetworks(self):
+ return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
+
+ def get_face_restorers(self):
+ return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
+
+ def get_realesrgan_models(self):
+ return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
+
+ def get_promp_styles(self):
+ styleList = []
+ for k in shared.prompt_styles.styles:
+ style = shared.prompt_styles.styles[k]
+ styleList.append({"name":style[0], "prompt": style[1], "negative_prompr": style[2]})
+
+ return styleList
+
+ def get_artists_categories(self):
+ return shared.artist_db.cats
+
+ def get_artists(self):
+ return [{"name":x[0], "score":x[1], "category":x[2]} for x in shared.artist_db.artists]
+
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)
diff --git a/modules/api/models.py b/modules/api/models.py
index 9ee42a17..2ae75f43 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -1,11 +1,11 @@
import inspect
-from click import prompt
from pydantic import BaseModel, Field, create_model
-from typing import Any, Optional
+from typing import Any, Optional, Union
from typing_extensions import Literal
from inflection import underscore
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
-from modules.shared import sd_upscalers
+from modules.shared import sd_upscalers, opts, parser
+from typing import List
API_NOT_ALLOWED = [
"self",
@@ -109,12 +109,12 @@ StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
).generate_model()
class TextToImageResponse(BaseModel):
- images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
+ images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: dict
info: str
class ImageToImageResponse(BaseModel):
- images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
+ images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: dict
info: str
@@ -131,6 +131,7 @@ class ExtrasBaseRequest(BaseModel):
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
+ upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?")
class ExtraBaseResponse(BaseModel):
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
@@ -146,10 +147,10 @@ class FileData(BaseModel):
name: str = Field(title="File name")
class ExtrasBatchImagesRequest(ExtrasBaseRequest):
- imageList: list[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
+ imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
class ExtrasBatchImagesResponse(ExtraBaseResponse):
- images: list[str] = Field(title="Images", description="The generated images in base64 format.")
+ images: List[str] = Field(title="Images", description="The generated images in base64 format.")
class PNGInfoRequest(BaseModel):
image: str = Field(title="Image", description="The base64 encoded PNG image")
@@ -165,3 +166,68 @@ class ProgressResponse(BaseModel):
eta_relative: float = Field(title="ETA in secs")
state: dict = Field(title="State", description="The current state snapshot")
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
+
+fields = {}
+for key, value in opts.data.items():
+ metadata = opts.data_labels.get(key)
+ optType = opts.typemap.get(type(value), type(value))
+
+ if (metadata is not None):
+ fields.update({key: (Optional[optType], Field(
+ default=metadata.default ,description=metadata.label))})
+ else:
+ fields.update({key: (Optional[optType], Field())})
+
+OptionsModel = create_model("Options", **fields)
+
+flags = {}
+_options = vars(parser)['_option_string_actions']
+for key in _options:
+ if(_options[key].dest != 'help'):
+ flag = _options[key]
+ _type = str
+ if(_options[key].default != None): _type = type(_options[key].default)
+ flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
+
+FlagsModel = create_model("Flags", **flags)
+
+class SamplerItem(BaseModel):
+ name: str = Field(title="Name")
+ aliases: list[str] = Field(title="Aliases")
+ options: dict[str, str] = Field(title="Options")
+
+class UpscalerItem(BaseModel):
+ name: str = Field(title="Name")
+ model_name: str | None = Field(title="Model Name")
+ model_path: str | None = Field(title="Path")
+ model_url: str | None = Field(title="URL")
+
+class SDModelItem(BaseModel):
+ title: str = Field(title="Title")
+ model_name: str = Field(title="Model Name")
+ hash: str = Field(title="Hash")
+ filename: str = Field(title="Filename")
+ config: str = Field(title="Config file")
+
+class HypernetworkItem(BaseModel):
+ name: str = Field(title="Name")
+ path: str | None = Field(title="Path")
+
+class FaceRestorerItem(BaseModel):
+ name: str = Field(title="Name")
+ cmd_dir: str | None = Field(title="Path")
+
+class RealesrganItem(BaseModel):
+ name: str = Field(title="Name")
+ path: str | None = Field(title="Path")
+ scale: int | None = Field(title="Scale")
+
+class PromptStyleItem(BaseModel):
+ name: str = Field(title="Name")
+ prompt: str | None = Field(title="Prompt")
+ negative_prompt: str | None = Field(title="Negative Prompt")
+
+class ArtistItem(BaseModel):
+ name: str = Field(title="Name")
+ score: float = Field(title="Score")
+ category: str = Field(title="Category") \ No newline at end of file
diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py
index a13cf6ac..c61669b4 100644
--- a/modules/esrgan_model.py
+++ b/modules/esrgan_model.py
@@ -50,6 +50,7 @@ def mod2normal(state_dict):
def resrgan2normal(state_dict, nb=23):
# this code is copied from https://github.com/victorca25/iNNfer
if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
+ re8x = 0
crt_net = {}
items = []
for k, v in state_dict.items():
@@ -75,10 +76,18 @@ def resrgan2normal(state_dict, nb=23):
crt_net['model.3.bias'] = state_dict['conv_up1.bias']
crt_net['model.6.weight'] = state_dict['conv_up2.weight']
crt_net['model.6.bias'] = state_dict['conv_up2.bias']
- crt_net['model.8.weight'] = state_dict['conv_hr.weight']
- crt_net['model.8.bias'] = state_dict['conv_hr.bias']
- crt_net['model.10.weight'] = state_dict['conv_last.weight']
- crt_net['model.10.bias'] = state_dict['conv_last.bias']
+
+ if 'conv_up3.weight' in state_dict:
+ # modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py
+ re8x = 3
+ crt_net['model.9.weight'] = state_dict['conv_up3.weight']
+ crt_net['model.9.bias'] = state_dict['conv_up3.bias']
+
+ crt_net[f'model.{8+re8x}.weight'] = state_dict['conv_hr.weight']
+ crt_net[f'model.{8+re8x}.bias'] = state_dict['conv_hr.bias']
+ crt_net[f'model.{10+re8x}.weight'] = state_dict['conv_last.weight']
+ crt_net[f'model.{10+re8x}.bias'] = state_dict['conv_last.bias']
+
state_dict = crt_net
return state_dict
diff --git a/modules/extras.py b/modules/extras.py
index 4d51088b..71b93a06 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -136,10 +136,11 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
blended_result: Image.Image = None
+ image_hash: str = hash(np.array(image.getdata()).tobytes())
for upscaler in params:
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
- cache_key = LruCache.Key(image_hash=hash(np.array(image.getdata()).tobytes()),
+ cache_key = LruCache.Key(image_hash=image_hash,
info_hash=hash(info),
args_hash=hash(upscale_args))
cached_entry = cached_images.get(cache_key)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index a11e01d6..6e1a10cf 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -35,7 +35,8 @@ class HypernetworkModule(torch.nn.Module):
}
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
- def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', add_layer_norm=False, use_dropout=False):
+ def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
+ add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=True):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
@@ -48,8 +49,8 @@ class HypernetworkModule(torch.nn.Module):
# Add a fully-connected layer
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
- # Add an activation func
- if activation_func == "linear" or activation_func is None:
+ # Add an activation func except last layer
+ if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
@@ -60,8 +61,8 @@ class HypernetworkModule(torch.nn.Module):
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
- # Add dropout expect last layer
- if use_dropout and i < len(layer_structure) - 3:
+ # Add dropout except last layer
+ if use_dropout and (i < len(layer_structure) - 3 or last_layer_dropout and i < len(layer_structure) - 2):
linears.append(torch.nn.Dropout(p=0.3))
self.linear = torch.nn.Sequential(*linears)
@@ -75,7 +76,7 @@ class HypernetworkModule(torch.nn.Module):
w, b = layer.weight.data, layer.bias.data
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
normal_(w, mean=0.0, std=0.01)
- normal_(b, mean=0.0, std=0.005)
+ normal_(b, mean=0.0, std=0)
elif weight_init == 'XavierUniform':
xavier_uniform_(w)
zeros_(b)
@@ -127,7 +128,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
self.filename = None
self.name = name
self.layers = {}
@@ -139,11 +140,15 @@ class Hypernetwork:
self.weight_init = weight_init
self.add_layer_norm = add_layer_norm
self.use_dropout = use_dropout
+ self.activate_output = activate_output
+ self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True
for size in enable_sizes or []:
self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
+ self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
+ self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
)
def weights(self):
@@ -171,7 +176,9 @@ class Hypernetwork:
state_dict['use_dropout'] = self.use_dropout
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
-
+ state_dict['activate_output'] = self.activate_output
+ state_dict['last_layer_dropout'] = self.last_layer_dropout
+
torch.save(state_dict, filename)
def load(self, filename):
@@ -191,12 +198,17 @@ class Hypernetwork:
print(f"Layer norm is set to {self.add_layer_norm}")
self.use_dropout = state_dict.get('use_dropout', False)
print(f"Dropout usage is set to {self.use_dropout}" )
+ self.activate_output = state_dict.get('activate_output', True)
+ print(f"Activate last layer is set to {self.activate_output}")
+ self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
- HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
+ self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
+ self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
)
self.name = state_dict.get('name', self.name)
diff --git a/modules/images.py b/modules/images.py
index a0728553..ae705cbd 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -510,8 +510,9 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
if extension.lower() == '.png':
pnginfo_data = PngImagePlugin.PngInfo()
- for k, v in params.pnginfo.items():
- pnginfo_data.add_text(k, str(v))
+ if opts.enable_pnginfo:
+ for k, v in params.pnginfo.items():
+ pnginfo_data.add_text(k, str(v))
image.save(fullfn, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
diff --git a/modules/img2img.py b/modules/img2img.py
index 35c5df9b..be9f3653 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -81,7 +81,8 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
mask = None
# Use the EXIF orientation of photos taken by smartphones.
- image = ImageOps.exif_transpose(image)
+ if image is not None:
+ image = ImageOps.exif_transpose(image)
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
@@ -137,6 +138,8 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
if processed is None:
processed = process_images(p)
+ p.close()
+
shared.total_tqdm.clear()
generation_info_js = processed.js()
diff --git a/modules/interrogate.py b/modules/interrogate.py
index 65b05d34..9769aa34 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -56,9 +56,9 @@ class InterrogateModels:
import clip
if self.running_on_cpu:
- model, preprocess = clip.load(clip_model_name, device="cpu")
+ model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path)
else:
- model, preprocess = clip.load(clip_model_name)
+ model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path)
model.eval()
model = model.to(devices.device_interrogate)
diff --git a/modules/masking.py b/modules/masking.py
index fd8d9241..a5c4d2da 100644
--- a/modules/masking.py
+++ b/modules/masking.py
@@ -49,7 +49,7 @@ def expand_crop_region(crop_region, processing_width, processing_height, image_w
ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing:
- desired_height = (x2 - x1) * ratio_processing
+ desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2-y1))
y1 -= desired_height_diff//2
y2 += desired_height_diff - desired_height_diff//2
diff --git a/modules/modelloader.py b/modules/modelloader.py
index b0f2f33d..e4a6f8ac 100644
--- a/modules/modelloader.py
+++ b/modules/modelloader.py
@@ -85,6 +85,9 @@ def cleanup_models():
src_path = os.path.join(root_path, "ESRGAN")
dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path)
+ src_path = os.path.join(models_path, "BSRGAN")
+ dest_path = os.path.join(models_path, "ESRGAN")
+ move_files(src_path, dest_path, ".pth")
src_path = os.path.join(root_path, "gfpgan")
dest_path = os.path.join(models_path, "GFPGAN")
move_files(src_path, dest_path)
diff --git a/modules/processing.py b/modules/processing.py
index 57d3a523..03c9143d 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -134,11 +134,7 @@ class StableDiffusionProcessing():
# Dummy zero conditioning if we're not using inpainting model.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
- return torch.zeros(
- x.shape[0], 5, 1, 1,
- dtype=x.dtype,
- device=x.device
- )
+ return x.new_zeros(x.shape[0], 5, 1, 1)
height = height or self.height
width = width or self.width
@@ -156,11 +152,7 @@ class StableDiffusionProcessing():
def img2img_image_conditioning(self, source_image, latent_image, image_mask = None):
if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
# Dummy zero conditioning if we're not using inpainting model.
- return torch.zeros(
- latent_image.shape[0], 5, 1, 1,
- dtype=latent_image.dtype,
- device=latent_image.device
- )
+ return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
# Handle the different mask inputs
if image_mask is not None:
@@ -174,11 +166,11 @@ class StableDiffusionProcessing():
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
conditioning_mask = torch.round(conditioning_mask)
else:
- conditioning_mask = torch.ones(1, 1, *source_image.shape[-2:])
+ conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
# Create another latent image, this time with a masked version of the original input.
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
- conditioning_mask = conditioning_mask.to(source_image.device)
+ conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype)
conditioning_image = torch.lerp(
source_image,
source_image * (1.0 - conditioning_mask),
@@ -199,9 +191,13 @@ class StableDiffusionProcessing():
def init(self, all_prompts, all_seeds, all_subseeds):
pass
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
raise NotImplementedError()
+ def close(self):
+ self.sd_model = None
+ self.sampler = None
+
class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
@@ -422,13 +418,13 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
try:
for k, v in p.override_settings.items():
- opts.data[k] = v # we don't call onchange for simplicity which makes changing model, hypernet impossible
+ setattr(opts, k, v) # we don't call onchange for simplicity which makes changing model, hypernet impossible
res = process_images_inner(p)
finally:
for k, v in stored_opts.items():
- opts.data[k] = v
+ setattr(opts, k, v)
return res
@@ -505,6 +501,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if len(prompts) == 0:
break
+ if p.scripts is not None:
+ p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
+
with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
@@ -517,7 +516,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
with devices.autocast():
- samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
+ samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
samples_ddim = samples_ddim.to(devices.dtype_vae)
x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
@@ -597,9 +596,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.scripts is not None:
p.scripts.postprocess(p, res)
- p.sd_model = None
- p.sampler = None
-
return res
@@ -648,7 +644,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr:
@@ -661,9 +657,28 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
+ """saves image before applying hires fix, if enabled in options; takes as an arguyment either an image or batch with latent space images"""
+ def save_intermediate(image, index):
+ if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
+ return
+
+ if not isinstance(image, Image.Image):
+ image = sd_samplers.sample_to_image(image, index)
+
+ images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix")
+
if opts.use_scale_latent_for_hires_fix:
+ for i in range(samples.shape[0]):
+ save_intermediate(samples, i)
+
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
+ # Avoid making the inpainting conditioning unless necessary as
+ # this does need some extra compute to decode / encode the image again.
+ if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
+ image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
+ else: