diff options
author | AUTOMATIC1111 <16777216c@gmail.com> | 2023-05-18 07:12:17 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-05-18 07:12:17 +0000 |
commit | 182330ae40c93b761fced8d03bbdd8523f1739d0 (patch) | |
tree | c95f2e531cc34475eb39266add6d12a2a5e1e2b3 /scripts/img2imgalt.py | |
parent | 0d31f20cbd556ea4ba3d8ad9254bcce71c32088c (diff) | |
parent | 983f2c494ad8fed2f08193681ba0bf5dda01555a (diff) | |
download | stable-diffusion-webui-gfx803-182330ae40c93b761fced8d03bbdd8523f1739d0.tar.gz stable-diffusion-webui-gfx803-182330ae40c93b761fced8d03bbdd8523f1739d0.tar.bz2 stable-diffusion-webui-gfx803-182330ae40c93b761fced8d03bbdd8523f1739d0.zip |
Merge branch 'dev' into ngrok-py
Diffstat (limited to 'scripts/img2imgalt.py')
-rw-r--r-- | scripts/img2imgalt.py | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index bb00fb3f..1e833fa8 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -149,9 +149,9 @@ class Script(scripts.Script): sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False, elem_id=self.elem_id("sigma_adjustment"))
return [
- info,
+ info,
override_sampler,
- override_prompt, original_prompt, original_negative_prompt,
+ override_prompt, original_prompt, original_negative_prompt,
override_steps, st,
override_strength,
cfg, randomness, sigma_adjustment,
@@ -191,17 +191,17 @@ class Script(scripts.Script): self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
-
+
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
-
+
sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)
-
+
noise_dt = combined_noise - (p.init_latent / sigmas[0])
-
+
p.seed = p.seed + 1
-
+
return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)
p.sample = sample_extra
|