aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/img2imgalt.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2023-01-04 15:39:57 +0000
committerGitHub <noreply@github.com>2023-01-04 15:39:57 +0000
commit37aafdb059fc038df7217a907048f7eb61f0beee (patch)
tree5ddecfd6d96d6bb1fea556a75fff58782ffcec3b /scripts/img2imgalt.py
parent4fbdbddc18b21f712acae58bf41740d27023285f (diff)
parenta8eb9e3bf814f72293e474c11e9ff0098859a942 (diff)
downloadstable-diffusion-webui-gfx803-37aafdb059fc038df7217a907048f7eb61f0beee.tar.gz
stable-diffusion-webui-gfx803-37aafdb059fc038df7217a907048f7eb61f0beee.tar.bz2
stable-diffusion-webui-gfx803-37aafdb059fc038df7217a907048f7eb61f0beee.zip
Merge branch 'master' into master
Diffstat (limited to 'scripts/img2imgalt.py')
-rw-r--r--scripts/img2imgalt.py15
1 files changed, 10 insertions, 5 deletions
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py
index d438175c..1229f61b 100644
--- a/scripts/img2imgalt.py
+++ b/scripts/img2imgalt.py
@@ -34,6 +34,9 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
sigma_in = torch.cat([sigmas[i] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
+ image_conditioning = torch.cat([p.image_conditioning] * 2)
+ cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
t = dnw.sigma_to_t(sigma_in)
@@ -78,6 +81,9 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
+ image_conditioning = torch.cat([p.image_conditioning] * 2)
+ cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
if i == 1:
@@ -151,7 +157,7 @@ class Script(scripts.Script):
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
# Override
if override_sampler:
- p.sampler_index = [sampler.name for sampler in sd_samplers.samplers].index("Euler")
+ p.sampler_name = "Euler"
if override_prompt:
p.prompt = original_prompt
p.negative_prompt = original_negative_prompt
@@ -160,8 +166,7 @@ class Script(scripts.Script):
if override_strength:
p.denoising_strength = 1.0
-
- def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
+ def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
lat = (p.init_latent.cpu().numpy() * 10).astype(int)
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
@@ -186,7 +191,7 @@ class Script(scripts.Script):
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
- sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
+ sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)
@@ -194,7 +199,7 @@ class Script(scripts.Script):
p.seed = p.seed + 1
- return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning)
+ return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)
p.sample = sample_extra