diff options
author | Dynamic <bradje@naver.com> | 2022-10-23 13:36:56 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-10-23 13:36:56 +0000 |
commit | 660ae690bd7107b78aac6413e1370f8cd72676bc (patch) | |
tree | b666cfd0872687ccd293a41d9d0a90fcdfe1ea0a /scripts/img2imgalt.py | |
parent | 21364c5c39b269497944b56dd6664792d779333b (diff) | |
parent | 6bd6154a92eb05c80d66df661a38f8b70cc13729 (diff) | |
download | stable-diffusion-webui-gfx803-660ae690bd7107b78aac6413e1370f8cd72676bc.tar.gz stable-diffusion-webui-gfx803-660ae690bd7107b78aac6413e1370f8cd72676bc.tar.bz2 stable-diffusion-webui-gfx803-660ae690bd7107b78aac6413e1370f8cd72676bc.zip |
Merge branch 'AUTOMATIC1111:master' into kr-localization
Diffstat (limited to 'scripts/img2imgalt.py')
-rw-r--r-- | scripts/img2imgalt.py | 8 |
1 files changed, 7 insertions, 1 deletions
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index d438175c..88abc093 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -34,6 +34,9 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps): sigma_in = torch.cat([sigmas[i] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
+ image_conditioning = torch.cat([p.image_conditioning] * 2)
+ cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
t = dnw.sigma_to_t(sigma_in)
@@ -78,6 +81,9 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps): sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
+ image_conditioning = torch.cat([p.image_conditioning] * 2)
+ cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
if i == 1:
@@ -194,7 +200,7 @@ class Script(scripts.Script): p.seed = p.seed + 1
- return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning)
+ return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)
p.sample = sample_extra
|