aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/img2imgalt.py
diff options
context:
space:
mode:
authoryfszzx <yfszzx@gmail.com>2022-10-23 08:17:37 +0000
committeryfszzx <yfszzx@gmail.com>2022-10-23 08:17:37 +0000
commit6a9ea40d7f64139f23d634efd7c2fb2c743a546f (patch)
tree8d420a5590c09e1d4c005a709166479856e70580 /scripts/img2imgalt.py
parent67b78f0ea6f196bfdca49932da062631bb40d0b1 (diff)
parent1ef32c8b8fa3e16a1e7b287eb19d4fc943d1f2a5 (diff)
downloadstable-diffusion-webui-gfx803-6a9ea40d7f64139f23d634efd7c2fb2c743a546f.tar.gz
stable-diffusion-webui-gfx803-6a9ea40d7f64139f23d634efd7c2fb2c743a546f.tar.bz2
stable-diffusion-webui-gfx803-6a9ea40d7f64139f23d634efd7c2fb2c743a546f.zip
Move browser and Inspiration into extension
Diffstat (limited to 'scripts/img2imgalt.py')
-rw-r--r--scripts/img2imgalt.py8
1 files changed, 7 insertions, 1 deletions
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py
index d438175c..88abc093 100644
--- a/scripts/img2imgalt.py
+++ b/scripts/img2imgalt.py
@@ -34,6 +34,9 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
sigma_in = torch.cat([sigmas[i] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
+ image_conditioning = torch.cat([p.image_conditioning] * 2)
+ cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
t = dnw.sigma_to_t(sigma_in)
@@ -78,6 +81,9 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
+ image_conditioning = torch.cat([p.image_conditioning] * 2)
+ cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
if i == 1:
@@ -194,7 +200,7 @@ class Script(scripts.Script):
p.seed = p.seed + 1
- return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning)
+ return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)
p.sample = sample_extra