aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/img2imgalt.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2023-01-04 14:40:19 +0000
committerGitHub <noreply@github.com>2023-01-04 14:40:19 +0000
commitda5c1e8a732c173ed8ccda9fa32f9a194ff91ab6 (patch)
treea2eec9c47e820e7ab351337f73c99d874b4b904f /scripts/img2imgalt.py
parentcffc240a7327ae60671ff533469fc4ed4bf605de (diff)
parent47df0849019abac6722c49512f4dd2285bff5b7d (diff)
downloadstable-diffusion-webui-gfx803-da5c1e8a732c173ed8ccda9fa32f9a194ff91ab6.tar.gz
stable-diffusion-webui-gfx803-da5c1e8a732c173ed8ccda9fa32f9a194ff91ab6.tar.bz2
stable-diffusion-webui-gfx803-da5c1e8a732c173ed8ccda9fa32f9a194ff91ab6.zip
Merge branch 'master' into inpaint_textual_inversion
Diffstat (limited to 'scripts/img2imgalt.py')
-rw-r--r--scripts/img2imgalt.py7
1 files changed, 3 insertions, 4 deletions
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py
index 88abc093..1229f61b 100644
--- a/scripts/img2imgalt.py
+++ b/scripts/img2imgalt.py
@@ -157,7 +157,7 @@ class Script(scripts.Script):
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
# Override
if override_sampler:
- p.sampler_index = [sampler.name for sampler in sd_samplers.samplers].index("Euler")
+ p.sampler_name = "Euler"
if override_prompt:
p.prompt = original_prompt
p.negative_prompt = original_negative_prompt
@@ -166,8 +166,7 @@ class Script(scripts.Script):
if override_strength:
p.denoising_strength = 1.0
-
- def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
+ def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
lat = (p.init_latent.cpu().numpy() * 10).astype(int)
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
@@ -192,7 +191,7 @@ class Script(scripts.Script):
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
- sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
+ sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)