aboutsummaryrefslogtreecommitdiffstats
path: root/scripts/xy_grid.py
diff options
context:
space:
mode:
authorAUTOMATIC1111 <16777216c@gmail.com>2023-01-13 11:57:38 +0000
committerGitHub <noreply@github.com>2023-01-13 11:57:38 +0000
commit9cd7716753c5be47f76b8e5555cc3e7c0f17d34d (patch)
tree345be78dd1991b77fcf4519bc44097e975e0b0c4 /scripts/xy_grid.py
parent18f86e41f6f289042c075bff1498e620ab997b8c (diff)
parent544e7a233e994f379dd67df08f5f519290b10293 (diff)
downloadstable-diffusion-webui-gfx803-9cd7716753c5be47f76b8e5555cc3e7c0f17d34d.tar.gz
stable-diffusion-webui-gfx803-9cd7716753c5be47f76b8e5555cc3e7c0f17d34d.tar.bz2
stable-diffusion-webui-gfx803-9cd7716753c5be47f76b8e5555cc3e7c0f17d34d.zip
Merge branch 'master' into tensorboard
Diffstat (limited to 'scripts/xy_grid.py')
-rw-r--r--scripts/xy_grid.py107
1 files changed, 80 insertions, 27 deletions
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index 5cca168a..f04d9b7e 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -10,13 +10,16 @@ import numpy as np
import modules.scripts as scripts
import gradio as gr
-from modules import images
+from modules import images, paths, sd_samplers, processing
from modules.hypernetworks import hypernetwork
-from modules.processing import process_images, Processed, get_correct_sampler, StableDiffusionProcessingTxt2Img
+from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.sd_samplers
import modules.sd_models
+import modules.sd_vae
+import glob
+import os
import re
@@ -58,29 +61,19 @@ def apply_order(p, x, xs):
prompt_tmp += part
prompt_tmp += x[idx]
p.prompt = prompt_tmp + p.prompt
-
-
-def build_samplers_dict(p):
- samplers_dict = {}
- for i, sampler in enumerate(get_correct_sampler(p)):
- samplers_dict[sampler.name.lower()] = i
- for alias in sampler.aliases:
- samplers_dict[alias.lower()] = i
- return samplers_dict
def apply_sampler(p, x, xs):
- sampler_index = build_samplers_dict(p).get(x.lower(), None)
- if sampler_index is None:
+ sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
+ if sampler_name is None:
raise RuntimeError(f"Unknown sampler: {x}")
- p.sampler_index = sampler_index
+ p.sampler_name = sampler_name
def confirm_samplers(p, xs):
- samplers_dict = build_samplers_dict(p)
for x in xs:
- if x.lower() not in samplers_dict.keys():
+ if x.lower() not in sd_samplers.samplers_map:
raise RuntimeError(f"Unknown sampler: {x}")
@@ -89,6 +82,7 @@ def apply_checkpoint(p, x, xs):
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
modules.sd_models.reload_model_weights(shared.sd_model, info)
+ p.sd_model = shared.sd_model
def confirm_checkpoints(p, xs):
@@ -123,6 +117,38 @@ def apply_clip_skip(p, x, xs):
opts.data["CLIP_stop_at_last_layers"] = x
+def apply_upscale_latent_space(p, x, xs):
+ if x.lower().strip() != '0':
+ opts.data["use_scale_latent_for_hires_fix"] = True
+ else:
+ opts.data["use_scale_latent_for_hires_fix"] = False
+
+
+def find_vae(name: str):
+ if name.lower() in ['auto', 'none']:
+ return name
+ else:
+ vae_path = os.path.abspath(os.path.join(paths.models_path, 'VAE'))
+ found = glob.glob(os.path.join(vae_path, f'**/{name}.*pt'), recursive=True)
+ if found:
+ return found[0]
+ else:
+ return 'auto'
+
+
+def apply_vae(p, x, xs):
+ if x.lower().strip() == 'none':
+ modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file='None')
+ else:
+ found = find_vae(x)
+ if found:
+ v = modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=found)
+
+
+def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
+ p.styles = x.split(',')
+
+
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
@@ -152,7 +178,6 @@ def str_permutations(x):
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
return x
-
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"])
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"])
@@ -177,6 +202,10 @@ axis_options = [
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None),
+ AxisOption("Hires upscaler", str, apply_field("hr_upscaler"), format_value_add_label, None),
+ AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None),
+ AxisOption("VAE", str, apply_vae, format_value_add_label, None),
+ AxisOption("Styles", str, apply_styles, format_value_add_label, None),
]
@@ -238,9 +267,11 @@ class SharedSettingsStackHelper(object):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.hypernetwork = opts.sd_hypernetwork
self.model = shared.sd_model
+ self.vae = opts.sd_vae
def __exit__(self, exc_type, exc_value, tb):
modules.sd_models.reload_model_weights(self.model)
+ modules.sd_vae.reload_vae_weights(self.model, vae_file=find_vae(self.vae))
hypernetwork.load_hypernetwork(self.hypernetwork)
hypernetwork.apply_strength()
@@ -254,6 +285,7 @@ re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
+
class Script(scripts.Script):
def title(self):
return "X/Y plot"
@@ -262,16 +294,16 @@ class Script(scripts.Script):
current_axis_options = [x for x in axis_options if type(x) == AxisOption or type(x) == AxisOptionImg2Img and is_img2img]
with gr.Row():
- x_type = gr.Dropdown(label="X type", choices=[x.label for x in current_axis_options], value=current_axis_options[1].label, visible=False, type="index", elem_id="x_type")
- x_values = gr.Textbox(label="X values", visible=False, lines=1)
+ x_type = gr.Dropdown(label="X type", choices=[x.label for x in current_axis_options], value=current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
+ x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
with gr.Row():
- y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[0].label, visible=False, type="index", elem_id="y_type")
- y_values = gr.Textbox(label="Y values", visible=False, lines=1)
+ y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
+ y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
- draw_legend = gr.Checkbox(label='Draw legend', value=True)
- include_lone_images = gr.Checkbox(label='Include Separate Images', value=False)
- no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)
+ draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
+ include_lone_images = gr.Checkbox(label='Include Separate Images', value=False, elem_id=self.elem_id("include_lone_images"))
+ no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
return [x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds]
@@ -350,7 +382,7 @@ class Script(scripts.Script):
ys = process_axis(y_opt, y_values)
def fix_axis_seeds(axis_opt, axis_list):
- if axis_opt.label in ['Seed','Var. seed']:
+ if axis_opt.label in ['Seed', 'Var. seed']:
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
else:
return axis_list
@@ -372,12 +404,33 @@ class Script(scripts.Script):
print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})")
shared.total_tqdm.updateTotal(total_steps * p.n_iter)
+ grid_infotext = [None]
+
def cell(x, y):
pc = copy(p)
x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys)
- return process_images(pc)
+ res = process_images(pc)
+
+ if grid_infotext[0] is None:
+ pc.extra_generation_params = copy(pc.extra_generation_params)
+
+ if x_opt.label != 'Nothing':
+ pc.extra_generation_params["X Type"] = x_opt.label
+ pc.extra_generation_params["X Values"] = x_values
+ if x_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
+ pc.extra_generation_params["Fixed X Values"] = ", ".join([str(x) for x in xs])
+
+ if y_opt.label != 'Nothing':
+ pc.extra_generation_params["Y Type"] = y_opt.label
+ pc.extra_generation_params["Y Values"] = y_values
+ if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
+ pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
+
+ grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
+
+ return res
with SharedSettingsStackHelper():
processed = draw_xy_grid(
@@ -392,6 +445,6 @@ class Script(scripts.Script):
)
if opts.grid_save:
- images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p)
+ images.save_image(processed.images[0], p.outpath_grids, "xy_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
return processed