diff options
author | Liam <liamthekerr@gmail.com> | 2022-09-27 20:37:24 +0000 |
---|---|---|
committer | Liam <liamthekerr@gmail.com> | 2022-09-27 20:37:24 +0000 |
commit | 981fe9c4a3994bb42ea5ff5212e4fe53b748bdd9 (patch) | |
tree | 80fd53962ccafeb773b2d43b178e1ee39ac03ca3 /scripts | |
parent | 5034f7d7597685aaa4779296983be0f49f4f991f (diff) | |
parent | f2a4a2c3a672e22f088a7455d6039557370dd3f2 (diff) | |
download | stable-diffusion-webui-gfx803-981fe9c4a3994bb42ea5ff5212e4fe53b748bdd9.tar.gz stable-diffusion-webui-gfx803-981fe9c4a3994bb42ea5ff5212e4fe53b748bdd9.tar.bz2 stable-diffusion-webui-gfx803-981fe9c4a3994bb42ea5ff5212e4fe53b748bdd9.zip |
Merge remote-tracking branch 'upstream/master' into token_count
Diffstat (limited to 'scripts')
-rw-r--r-- | scripts/img2imgalt.py | 68 | ||||
-rw-r--r-- | scripts/xy_grid.py | 13 |
2 files changed, 73 insertions, 8 deletions
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index 7b4ba244..0ef137f7 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -59,7 +59,55 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps): return x / x.std()
-Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt"])
+Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])
+
+
+# Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736
+def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
+ x = p.init_latent
+
+ s_in = x.new_ones([x.shape[0]])
+ dnw = K.external.CompVisDenoiser(shared.sd_model)
+ sigmas = dnw.get_sigmas(steps).flip(0)
+
+ shared.state.sampling_steps = steps
+
+ for i in trange(1, len(sigmas)):
+ shared.state.sampling_step += 1
+
+ x_in = torch.cat([x] * 2)
+ sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
+ cond_in = torch.cat([uncond, cond])
+
+ c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
+
+ if i == 1:
+ t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
+ else:
+ t = dnw.sigma_to_t(sigma_in)
+
+ eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
+ denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
+
+ denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
+
+ if i == 1:
+ d = (x - denoised) / (2 * sigmas[i])
+ else:
+ d = (x - denoised) / sigmas[i - 1]
+
+ dt = sigmas[i] - sigmas[i - 1]
+ x = x + d * dt
+
+ sd_samplers.store_latent(x)
+
+ # This shouldn't be necessary, but solved some VRAM issues
+ del x_in, sigma_in, cond_in, c_out, c_in, t,
+ del eps, denoised_uncond, denoised_cond, denoised, d, dt
+
+ shared.state.nextjob()
+
+ return x / sigmas[-1]
class Script(scripts.Script):
@@ -78,9 +126,10 @@ class Script(scripts.Script): cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0)
st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50)
randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0)
- return [original_prompt, original_negative_prompt, cfg, st, randomness]
+ sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False)
+ return [original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment]
- def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness):
+ def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment):
p.batch_size = 1
p.batch_count = 1
@@ -88,7 +137,10 @@ class Script(scripts.Script): def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
lat = (p.init_latent.cpu().numpy() * 10).astype(int)
- same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st and self.cache.original_prompt == original_prompt and self.cache.original_negative_prompt == original_negative_prompt
+ same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
+ and self.cache.original_prompt == original_prompt \
+ and self.cache.original_negative_prompt == original_negative_prompt \
+ and self.cache.sigma_adjustment == sigma_adjustment
same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
if same_everything:
@@ -97,8 +149,11 @@ class Script(scripts.Script): shared.state.job_count += 1
cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
- rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
- self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt)
+ if sigma_adjustment:
+ rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)
+ else:
+ rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
+ self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])])
@@ -121,6 +176,7 @@ class Script(scripts.Script): p.extra_generation_params["Decode CFG scale"] = cfg
p.extra_generation_params["Decode steps"] = st
p.extra_generation_params["Randomness"] = randomness
+ p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment
processed = processing.process_images(p)
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index 3a2e103f..7c01231f 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -2,6 +2,7 @@ from collections import namedtuple from copy import copy
import random
+from PIL import Image
import numpy as np
import modules.scripts as scripts
@@ -86,7 +87,12 @@ axis_options = [ AxisOption("Prompt S/R", str, apply_prompt, format_value),
AxisOption("Sampler", str, apply_sampler, format_value),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value),
- AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
+ AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label),
+ AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label),
+ AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
+ AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label),
+ AxisOption("DDIM Eta", float, apply_field("ddim_eta"), format_value_add_label),
+ AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label),# as it is now all AxisOptionImg2Img items must go after AxisOption ones
]
@@ -108,7 +114,10 @@ def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend): if first_pocessed is None:
first_pocessed = processed
- res.append(processed.images[0])
+ try:
+ res.append(processed.images[0])
+ except:
+ res.append(Image.new(res[0].mode, res[0].size))
grid = images.image_grid(res, rows=len(ys))
if draw_legend:
|