diff options
-rw-r--r-- | modules/prompt_parser.py | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index 800b12c7..fdfa21ae 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -1,6 +1,6 @@ import re
from collections import namedtuple
-
+from typing import List
import lark
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
@@ -175,14 +175,14 @@ def get_multicond_prompt_list(prompts): class ComposableScheduledPromptConditioning:
def __init__(self, schedules, weight=1.0):
- self.schedules: list[ScheduledPromptConditioning] = schedules
+ self.schedules: List[ScheduledPromptConditioning] = schedules
self.weight: float = weight
class MulticondLearnedConditioning:
def __init__(self, shape, batch):
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
- self.batch: list[list[ComposableScheduledPromptConditioning]] = batch
+ self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
@@ -203,7 +203,7 @@ def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearne return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
-def reconstruct_cond_batch(c: list[list[ScheduledPromptConditioning]], current_step):
+def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
param = c[0][0].cond
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
for i, cond_schedule in enumerate(c):
|