aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--extensions-builtin/LDSR/sd_hijack_autoencoder.py10
-rw-r--r--extensions-builtin/LDSR/sd_hijack_ddpm_v1.py14
-rw-r--r--extensions-builtin/SwinIR/swinir_model_arch.py6
-rw-r--r--extensions-builtin/SwinIR/swinir_model_arch_v2.py11
-rw-r--r--modules/api/api.py18
-rw-r--r--modules/codeformer/codeformer_arch.py7
-rw-r--r--modules/codeformer/vqgan_arch.py4
-rw-r--r--modules/generation_parameters_copypaste.py4
-rw-r--r--modules/models/diffusion/ddpm_edit.py14
-rw-r--r--modules/models/diffusion/uni_pc/uni_pc.py7
-rw-r--r--modules/safe.py2
-rw-r--r--modules/sd_samplers_compvis.py2
-rw-r--r--modules/textual_inversion/image_embedding.py2
-rw-r--r--modules/textual_inversion/learn_schedule.py4
-rw-r--r--pyproject.toml5
15 files changed, 69 insertions, 41 deletions
diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
index f457ca93..8cc82d54 100644
--- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py
+++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
@@ -24,7 +24,7 @@ class VQModel(pl.LightningModule):
n_embed,
embed_dim,
ckpt_path=None,
- ignore_keys=[],
+ ignore_keys=None,
image_key="image",
colorize_nlabels=None,
monitor=None,
@@ -62,7 +62,7 @@ class VQModel(pl.LightningModule):
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [])
self.scheduler_config = scheduler_config
self.lr_g_factor = lr_g_factor
@@ -81,11 +81,11 @@ class VQModel(pl.LightningModule):
if context is not None:
print(f"{context}: Restored training weights")
- def init_from_ckpt(self, path, ignore_keys=list()):
+ def init_from_ckpt(self, path, ignore_keys=None):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
- for ik in ignore_keys:
+ for ik in ignore_keys or []:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
@@ -270,7 +270,7 @@ class VQModel(pl.LightningModule):
class VQModelInterface(VQModel):
def __init__(self, embed_dim, *args, **kwargs):
- super().__init__(embed_dim=embed_dim, *args, **kwargs)
+ super().__init__(*args, embed_dim=embed_dim, **kwargs)
self.embed_dim = embed_dim
def encode(self, x):
diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
index d8fc30e3..f16d6504 100644
--- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
+++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
@@ -48,7 +48,7 @@ class DDPMV1(pl.LightningModule):
beta_schedule="linear",
loss_type="l2",
ckpt_path=None,
- ignore_keys=[],
+ ignore_keys=None,
load_only_unet=False,
monitor="val/loss",
use_ema=True,
@@ -100,7 +100,7 @@ class DDPMV1(pl.LightningModule):
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet)
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
@@ -182,13 +182,13 @@ class DDPMV1(pl.LightningModule):
if context is not None:
print(f"{context}: Restored training weights")
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ def init_from_ckpt(self, path, ignore_keys=None, only_model=False):
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
- for ik in ignore_keys:
+ for ik in ignore_keys or []:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
@@ -444,7 +444,7 @@ class LatentDiffusionV1(DDPMV1):
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
- super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+ super().__init__(*args, conditioning_key=conditioning_key, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
@@ -1418,10 +1418,10 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1):
# TODO: move all layout-specific hacks to this class
def __init__(self, cond_stage_key, *args, **kwargs):
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
- super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
+ super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs)
def log_images(self, batch, N=8, *args, **kwargs):
- logs = super().log_images(batch=batch, N=N, *args, **kwargs)
+ logs = super().log_images(*args, batch=batch, N=N, **kwargs)
key = 'train' if self.training else 'validation'
dset = self.trainer.datamodule.datasets[key]
diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py
index 863f42db..75f7bedc 100644
--- a/extensions-builtin/SwinIR/swinir_model_arch.py
+++ b/extensions-builtin/SwinIR/swinir_model_arch.py
@@ -644,13 +644,17 @@ class SwinIR(nn.Module):
"""
def __init__(self, img_size=64, patch_size=1, in_chans=3,
- embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
+ embed_dim=96, depths=None, num_heads=None,
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
**kwargs):
super(SwinIR, self).__init__()
+
+ depths = depths or [6, 6, 6, 6]
+ num_heads = num_heads or [6, 6, 6, 6]
+
num_in_ch = in_chans
num_out_ch = in_chans
num_feat = 64
diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py
index 0e28ae6e..d4c0b0da 100644
--- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py
+++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py
@@ -74,9 +74,12 @@ class WindowAttention(nn.Module):
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
- pretrained_window_size=[0, 0]):
+ pretrained_window_size=None):
super().__init__()
+
+ pretrained_window_size = pretrained_window_size or [0, 0]
+
self.dim = dim
self.window_size = window_size # Wh, Ww
self.pretrained_window_size = pretrained_window_size
@@ -698,13 +701,17 @@ class Swin2SR(nn.Module):
"""
def __init__(self, img_size=64, patch_size=1, in_chans=3,
- embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
+ embed_dim=96, depths=None, num_heads=None,
window_size=7, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
**kwargs):
super(Swin2SR, self).__init__()
+
+ depths = depths or [6, 6, 6, 6]
+ num_heads = num_heads or [6, 6, 6, 6]
+
num_in_ch = in_chans
num_out_ch = in_chans
num_feat = 64
diff --git a/modules/api/api.py b/modules/api/api.py
index f52d371b..9efb558e 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -34,14 +34,16 @@ import piexif.helper
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
- except Exception:
- raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}")
+ except Exception as e:
+ raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e
+
def script_name_to_index(name, scripts):
try:
return [script.title().lower() for script in scripts].index(name.lower())
- except Exception:
- raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
+ except Exception as e:
+ raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e
+
def validate_sampler_name(name):
config = sd_samplers.all_samplers_map.get(name, None)
@@ -50,20 +52,23 @@ def validate_sampler_name(name):
return name
+
def setUpscalers(req: dict):
reqDict = vars(req)
reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
return reqDict
+
def decode_base64_to_image(encoding):
if encoding.startswith("data:image/"):
encoding = encoding.split(";")[1].split(",")[1]
try:
image = Image.open(BytesIO(base64.b64decode(encoding)))
return image
- except Exception:
- raise HTTPException(status_code=500, detail="Invalid encoded image")
+ except Exception as e:
+ raise HTTPException(status_code=500, detail="Invalid encoded image") from e
+
def encode_pil_to_base64(image):
with io.BytesIO() as output_bytes:
@@ -94,6 +99,7 @@ def encode_pil_to_base64(image):
return base64.b64encode(bytes_data)
+
def api_middleware(app: FastAPI):
rich_available = True
try:
diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py
index 00c407de..ff1c0b4b 100644
--- a/modules/codeformer/codeformer_arch.py
+++ b/modules/codeformer/codeformer_arch.py
@@ -161,10 +161,13 @@ class Fuse_sft_block(nn.Module):
class CodeFormer(VQAutoEncoder):
def __init__(self, dim_embd=512, n_head=8, n_layers=9,
codebook_size=1024, latent_size=256,
- connect_list=['32', '64', '128', '256'],
- fix_modules=['quantize','generator']):
+ connect_list=None,
+ fix_modules=None):
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
+ connect_list = connect_list or ['32', '64', '128', '256']
+ fix_modules = fix_modules or ['quantize', 'generator']
+
if fix_modules is not None:
for module in fix_modules:
for param in getattr(self, module).parameters():
diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py
index 820e6b12..b24a0394 100644
--- a/modules/codeformer/vqgan_arch.py
+++ b/modules/codeformer/vqgan_arch.py
@@ -326,7 +326,7 @@ class Generator(nn.Module):
@ARCH_REGISTRY.register()
class VQAutoEncoder(nn.Module):
- def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
+ def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256,
beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
super().__init__()
logger = get_root_logger()
@@ -337,7 +337,7 @@ class VQAutoEncoder(nn.Module):
self.embed_dim = emb_dim
self.ch_mult = ch_mult
self.resolution = img_size
- self.attn_resolutions = attn_resolutions
+ self.attn_resolutions = attn_resolutions or [16]
self.quantizer_type = quantizer
self.encoder = Encoder(
self.in_channels,
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index f1c59c46..7fbbe707 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -19,14 +19,14 @@ registered_param_bindings = []
class ParamBinding:
- def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=[]):
+ def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=None):
self.paste_button = paste_button
self.tabname = tabname
self.source_text_component = source_text_component
self.source_image_component = source_image_component
self.source_tabname = source_tabname
self.override_settings_component = override_settings_component
- self.paste_field_names = paste_field_names
+ self.paste_field_names = paste_field_names or []
def reset():
diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py
index 09432117..af4dea15 100644
--- a/modules/models/diffusion/ddpm_edit.py
+++ b/modules/models/diffusion/ddpm_edit.py
@@ -52,7 +52,7 @@ class DDPM(pl.LightningModule):
beta_schedule="linear",
loss_type="l2",
ckpt_path=None,
- ignore_keys=[],
+ ignore_keys=None,
load_only_unet=False,
monitor="val/loss",
use_ema=True,
@@ -107,7 +107,7 @@ class DDPM(pl.LightningModule):
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet)
# If initialing from EMA-only checkpoint, create EMA model after loading.
if self.use_ema and not load_ema:
@@ -194,7 +194,9 @@ class DDPM(pl.LightningModule):
if context is not None:
print(f"{context}: Restored training weights")
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ def init_from_ckpt(self, path, ignore_keys=None, only_model=False):
+ ignore_keys = ignore_keys or []
+
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
@@ -473,7 +475,7 @@ class LatentDiffusion(DDPM):
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
- super().__init__(conditioning_key=conditioning_key, *args, load_ema=load_ema, **kwargs)
+ super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
@@ -1433,10 +1435,10 @@ class Layout2ImgDiffusion(LatentDiffusion):
# TODO: move all layout-specific hacks to this class
def __init__(self, cond_stage_key, *args, **kwargs):
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
- super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
+ super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs)
def log_images(self, batch, N=8, *args, **kwargs):
- logs = super().log_images(batch=batch, N=N, *args, **kwargs)
+ logs = super().log_images(*args, batch=batch, N=N, **kwargs)
key = 'train' if self.training else 'validation'
dset = self.trainer.datamodule.datasets[key]
diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py
index a4c4ef4e..6f8ad631 100644
--- a/modules/models/diffusion/uni_pc/uni_pc.py
+++ b/modules/models/diffusion/uni_pc/uni_pc.py
@@ -178,13 +178,13 @@ def model_wrapper(
model,
noise_schedule,
model_type="noise",
- model_kwargs={},
+ model_kwargs=None,
guidance_type="uncond",
#condition=None,
#unconditional_condition=None,
guidance_scale=1.,
classifier_fn=None,
- classifier_kwargs={},
+ classifier_kwargs=None,
):
"""Create a wrapper function for the noise prediction model.
@@ -275,6 +275,9 @@ def model_wrapper(
A noise prediction model that accepts the noised data and the continuous time as the inputs.
"""
+ model_kwargs = model_kwargs or []
+ classifier_kwargs = classifier_kwargs or []
+
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
diff --git a/modules/safe.py b/modules/safe.py
index e6c2f2c0..2d5b972f 100644
--- a/modules/safe.py
+++ b/modules/safe.py
@@ -104,7 +104,7 @@ def check_pt(filename, extra_handler):
def load(filename, *args, **kwargs):
- return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
+ return load_with_extra(filename, *args, extra_handler=global_extra_handler, **kwargs)
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py
index 7427648f..b1ee3be7 100644
--- a/modules/sd_samplers_compvis.py
+++ b/modules/sd_samplers_compvis.py
@@ -55,7 +55,7 @@ class VanillaStableDiffusionSampler:
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
- res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
+ res = self.orig_p_sample_ddim(x_dec, cond, ts, *args, unconditional_conditioning=unconditional_conditioning, **kwargs)
x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py
index ee0e850a..d85a4888 100644
--- a/modules/textual_inversion/image_embedding.py
+++ b/modules/textual_inversion/image_embedding.py
@@ -17,7 +17,7 @@ class EmbeddingEncoder(json.JSONEncoder):
class EmbeddingDecoder(json.JSONDecoder):
def __init__(self, *args, **kwargs):
- json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
+ json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs)
def object_hook(self, d):
if 'TORCHTENSOR' in d:
diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py
index f63fc72f..fda58898 100644
--- a/modules/textual_inversion/learn_schedule.py
+++ b/modules/textual_inversion/learn_schedule.py
@@ -32,8 +32,8 @@ class LearnScheduleIterator:
self.maxit += 1
return
assert self.rates
- except (ValueError, AssertionError):
- raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.')
+ except (ValueError, AssertionError) as e:
+ raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') from e
def __iter__(self):
diff --git a/pyproject.toml b/pyproject.toml
index 2f65fd6c..346a0cde 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -24,6 +24,9 @@ ignore = [
]
-
[tool.ruff.per-file-ignores]
"webui.py" = ["E402"] # Module level import not at top of file
+
+[tool.ruff.flake8-bugbear]
+# Allow default arguments like, e.g., `data: List[str] = fastapi.Query(None)`.
+extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"] \ No newline at end of file