diff options
-rw-r--r-- | modules/codeformer_model.py | 12 | ||||
-rw-r--r-- | modules/devices.py | 10 | ||||
-rw-r--r-- | modules/gfpgan_model.py | 14 | ||||
-rw-r--r-- | modules/processing.py | 16 |
4 files changed, 41 insertions, 11 deletions
diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index a29f3855..e6d9fa4f 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -69,10 +69,14 @@ def setup_model(dirname): self.net = net
self.face_helper = face_helper
- self.net.to(devices.device_codeformer)
return net, face_helper
+ def send_model_to(self, device):
+ self.net.to(device)
+ self.face_helper.face_det.to(device)
+ self.face_helper.face_parse.to(device)
+
def restore(self, np_image, w=None):
np_image = np_image[:, :, ::-1]
@@ -82,6 +86,8 @@ def setup_model(dirname): if self.net is None or self.face_helper is None:
return np_image
+ self.send_model_to(devices.device_codeformer)
+
self.face_helper.clean_all()
self.face_helper.read_image(np_image)
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
@@ -113,8 +119,10 @@ def setup_model(dirname): if original_resolution != restored_img.shape[0:2]:
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
+ self.face_helper.clean_all()
+
if shared.opts.face_restoration_unload:
- self.net.to(devices.cpu)
+ self.send_model_to(devices.cpu)
return restored_img
diff --git a/modules/devices.py b/modules/devices.py index ff82f2f6..12aab665 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -1,3 +1,5 @@ +import contextlib + import torch # has_mps is only available in nightly pytorch (for now), `getattr` for compatibility @@ -57,3 +59,11 @@ def randn_without_seed(shape): return torch.randn(shape, device=device) + +def autocast(): + from modules import shared + + if dtype == torch.float32 or shared.cmd_opts.precision == "full": + return contextlib.nullcontext() + + return torch.autocast("cuda") diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py index dd3fbcab..5586b554 100644 --- a/modules/gfpgan_model.py +++ b/modules/gfpgan_model.py @@ -37,22 +37,32 @@ def gfpgann(): print("Unable to load gfpgan model!")
return None
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
- model.gfpgan.to(shared.device)
loaded_gfpgan_model = model
return model
+def send_model_to(model, device):
+ model.gfpgan.to(device)
+ model.face_helper.face_det.to(device)
+ model.face_helper.face_parse.to(device)
+
+
def gfpgan_fix_faces(np_image):
model = gfpgann()
if model is None:
return np_image
+
+ send_model_to(model, devices.device)
+
np_image_bgr = np_image[:, :, ::-1]
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1]
+ model.face_helper.clean_all()
+
if shared.opts.face_restoration_unload:
- model.gfpgan.to(devices.cpu)
+ send_model_to(model, devices.cpu)
return np_image
diff --git a/modules/processing.py b/modules/processing.py index 0a4b6198..9cbecdd8 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1,4 +1,3 @@ -import contextlib
import json
import math
import os
@@ -330,9 +329,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed: infotexts = []
output_images = []
- precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
- ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope)
- with torch.no_grad(), precision_scope("cuda"), ema_scope():
+
+ with torch.no_grad():
p.init(all_prompts, all_seeds, all_subseeds)
if state.job_count == -1:
@@ -351,8 +349,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed: #uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
#c = p.sd_model.get_learned_conditioning(prompts)
- uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
- c = prompt_parser.get_learned_conditioning(prompts, p.steps)
+ with devices.autocast():
+ uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
+ c = prompt_parser.get_learned_conditioning(prompts, p.steps)
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments:
@@ -361,7 +360,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
- samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
+ with devices.autocast():
+ samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength).to(devices.dtype)
+
if state.interrupted:
# if we are interruped, sample returns just noise
@@ -386,6 +387,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: devices.torch_gc()
x_sample = modules.face_restoration.restore_faces(x_sample)
+ devices.torch_gc()
image = Image.fromarray(x_sample)
|