diff options
-rw-r--r-- | extensions-builtin/Lora/network_oft.py | 82 | ||||
-rw-r--r-- | extensions-builtin/Lora/networks.py | 5 |
2 files changed, 87 insertions, 0 deletions
diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py new file mode 100644 index 00000000..9ddb175c --- /dev/null +++ b/extensions-builtin/Lora/network_oft.py @@ -0,0 +1,82 @@ +import torch +import network + + +class ModuleTypeOFT(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["oft_blocks"]): + return NetworkModuleOFT(net, weights) + + return None + +# adapted from https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py +class NetworkModuleOFT(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + self.oft_blocks = weights.w["oft_blocks"] + self.alpha = weights.w["alpha"] + + self.dim = self.oft_blocks.shape[0] + self.num_blocks = self.dim + + #if type(self.alpha) == torch.Tensor: + # self.alpha = self.alpha.detach().numpy() + + if "Linear" in self.sd_module.__class__.__name__: + self.out_dim = self.sd_module.out_features + elif "Conv" in self.sd_module.__class__.__name__: + self.out_dim = self.sd_module.out_channels + + self.constraint = self.alpha * self.out_dim + self.block_size = self.out_dim // self.num_blocks + + self.oft_multiplier = self.multiplier() + + # replace forward method of original linear rather than replacing the module + # self.org_forward = self.sd_module.forward + # self.sd_module.forward = self.forward + + def get_weight(self): + block_Q = self.oft_blocks - self.oft_blocks.transpose(1, 2) + norm_Q = torch.norm(block_Q.flatten()) + new_norm_Q = torch.clamp(norm_Q, max=self.constraint) + block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) + I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) + block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) + + block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I + R = torch.block_diag(*block_R_weighted) + + return R + + def calc_updown(self, orig_weight): + oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) + block_Q = oft_blocks - oft_blocks.transpose(1, 2) + norm_Q = torch.norm(block_Q.flatten()) + new_norm_Q = torch.clamp(norm_Q, max=self.constraint) + block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) + I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) + block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) + + block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I + R = torch.block_diag(*block_R_weighted) + #R = self.get_weight().to(orig_weight.device, dtype=orig_weight.dtype) + # W = R*W_0 + updown = orig_weight + R + output_shape = [R.size(0), orig_weight.size(1)] + return self.finalize_updown(updown, orig_weight, output_shape) + + # def forward(self, x, y=None): + # x = self.org_forward(x) + # if self.oft_multiplier == 0.0: + # return x + + # R = self.get_weight().to(x.device, dtype=x.dtype) + # if x.dim() == 4: + # x = x.permute(0, 2, 3, 1) + # x = torch.matmul(x, R) + # x = x.permute(0, 3, 1, 2) + # else: + # x = torch.matmul(x, R) + # return x diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index 60d8dec4..bd1f1b75 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -11,6 +11,7 @@ import network_ia3 import network_lokr
import network_full
import network_norm
+import network_oft
import torch
from typing import Union
@@ -28,6 +29,7 @@ module_types = [ network_full.ModuleTypeFull(),
network_norm.ModuleTypeNorm(),
network_glora.ModuleTypeGLora(),
+ network_oft.ModuleTypeOFT(),
]
@@ -183,6 +185,9 @@ def load_network(name, network_on_disk): elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
+ elif sd_module is None and "oft_unet" in key_network_without_network_parts:
+ key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
+ sd_module = shared.sd_model.network_layer_mapping.get(key, None)
# some SD1 Loras also have correct compvis keys
if sd_module is None:
|