aboutsummaryrefslogtreecommitdiffstats
path: root/extensions-builtin/LDSR/ldsr_model_arch.py
diff options
context:
space:
mode:
Diffstat (limited to 'extensions-builtin/LDSR/ldsr_model_arch.py')
-rw-r--r--extensions-builtin/LDSR/ldsr_model_arch.py49
1 files changed, 34 insertions, 15 deletions
diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py
index a87d1ef9..8b048ae0 100644
--- a/extensions-builtin/LDSR/ldsr_model_arch.py
+++ b/extensions-builtin/LDSR/ldsr_model_arch.py
@@ -11,25 +11,41 @@ from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config, ismap
+from modules import shared, sd_hijack
warnings.filterwarnings("ignore", category=UserWarning)
+cached_ldsr_model: torch.nn.Module = None
+
# Create LDSR Class
class LDSR:
def load_model_from_config(self, half_attention):
- print(f"Loading model from {self.modelPath}")
- pl_sd = torch.load(self.modelPath, map_location="cpu")
- sd = pl_sd["state_dict"]
- config = OmegaConf.load(self.yamlPath)
- config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
- model = instantiate_from_config(config.model)
- model.load_state_dict(sd, strict=False)
- model.cuda()
- if half_attention:
- model = model.half()
-
- model.eval()
+ global cached_ldsr_model
+
+ if shared.opts.ldsr_cached and cached_ldsr_model is not None:
+ print(f"Loading model from cache")
+ model: torch.nn.Module = cached_ldsr_model
+ else:
+ print(f"Loading model from {self.modelPath}")
+ pl_sd = torch.load(self.modelPath, map_location="cpu")
+ sd = pl_sd["state_dict"]
+ config = OmegaConf.load(self.yamlPath)
+ config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
+ model: torch.nn.Module = instantiate_from_config(config.model)
+ model.load_state_dict(sd, strict=False)
+ model = model.to(shared.device)
+ if half_attention:
+ model = model.half()
+ if shared.cmd_opts.opt_channelslast:
+ model = model.to(memory_format=torch.channels_last)
+
+ sd_hijack.model_hijack.hijack(model) # apply optimization
+ model.eval()
+
+ if shared.opts.ldsr_cached:
+ cached_ldsr_model = model
+
return {"model": model}
def __init__(self, model_path, yaml_path):
@@ -94,7 +110,8 @@ class LDSR:
down_sample_method = 'Lanczos'
gc.collect()
- torch.cuda.empty_cache()
+ if torch.cuda.is_available:
+ torch.cuda.empty_cache()
im_og = image
width_og, height_og = im_og.size
@@ -131,7 +148,9 @@ class LDSR:
del model
gc.collect()
- torch.cuda.empty_cache()
+ if torch.cuda.is_available:
+ torch.cuda.empty_cache()
+
return a
@@ -146,7 +165,7 @@ def get_cond(selected_path):
c = rearrange(c, '1 c h w -> 1 h w c')
c = 2. * c - 1.
- c = c.to(torch.device("cuda"))
+ c = c.to(shared.device)
example["LR_image"] = c
example["image"] = c_up