aboutsummaryrefslogtreecommitdiffstats
path: root/extensions-builtin/LDSR
diff options
context:
space:
mode:
Diffstat (limited to 'extensions-builtin/LDSR')
-rw-r--r--extensions-builtin/LDSR/ldsr_model_arch.py4
-rw-r--r--extensions-builtin/LDSR/sd_hijack_autoencoder.py2
-rw-r--r--extensions-builtin/LDSR/sd_hijack_ddpm_v1.py8
3 files changed, 7 insertions, 7 deletions
diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py
index 27e38549..2173de79 100644
--- a/extensions-builtin/LDSR/ldsr_model_arch.py
+++ b/extensions-builtin/LDSR/ldsr_model_arch.py
@@ -157,7 +157,7 @@ class LDSR:
def get_cond(selected_path):
- example = dict()
+ example = {}
up_f = 4
c = selected_path.convert('RGB')
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
@@ -195,7 +195,7 @@ def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_s
@torch.no_grad()
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False):
- log = dict()
+ log = {}
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
return_first_stage_outputs=True,
diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
index 8cc82d54..81c5101b 100644
--- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py
+++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
@@ -237,7 +237,7 @@ class VQModel(pl.LightningModule):
return self.decoder.conv_out.weight
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
- log = dict()
+ log = {}
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if only_inputs:
diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
index f16d6504..57c02d12 100644
--- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
+++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
@@ -375,7 +375,7 @@ class DDPMV1(pl.LightningModule):
@torch.no_grad()
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
- log = dict()
+ log = {}
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
@@ -383,7 +383,7 @@ class DDPMV1(pl.LightningModule):
log["inputs"] = x
# get diffusion row
- diffusion_row = list()
+ diffusion_row = []
x_start = x[:n_row]
for t in range(self.num_timesteps):
@@ -1247,7 +1247,7 @@ class LatentDiffusionV1(DDPMV1):
use_ddim = ddim_steps is not None
- log = dict()
+ log = {}
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
@@ -1274,7 +1274,7 @@ class LatentDiffusionV1(DDPMV1):
if plot_diffusion_rows:
# get diffusion row
- diffusion_row = list()
+ diffusion_row = []
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: