diff options
Diffstat (limited to 'modules/hypernetworks/hypernetwork.py')
-rw-r--r-- | modules/hypernetworks/hypernetwork.py | 105 |
1 files changed, 59 insertions, 46 deletions
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 905cbeef..893ba110 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module): linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# if skip_first_layer because first parameters potentially contain negative values
# if i < 1: continue
+ if add_layer_norm:
+ linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
if activation_func in HypernetworkModule.activation_dict:
linears.append(HypernetworkModule.activation_dict[activation_func]())
else:
print("Invalid key {} encountered as activation function!".format(activation_func))
# if use_dropout:
# linears.append(torch.nn.Dropout(p=0.3))
- if add_layer_norm:
- linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
self.linear = torch.nn.Sequential(*linears)
@@ -115,11 +115,24 @@ class Hypernetwork: for k, layers in self.layers.items():
for layer in layers:
- layer.train()
res += layer.trainables()
return res
+ def eval(self):
+ for k, layers in self.layers.items():
+ for layer in layers:
+ layer.eval()
+ for items in self.weights():
+ items.requires_grad = False
+
+ def train(self):
+ for k, layers in self.layers.items():
+ for layer in layers:
+ layer.train()
+ for items in self.weights():
+ items.requires_grad = True
+
def save(self, filename):
state_dict = {}
@@ -290,10 +303,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log shared.sd_model.first_stage_model.to(devices.cpu)
hypernetwork = shared.loaded_hypernetwork
- weights = hypernetwork.weights()
- for weight in weights:
- weight.requires_grad = True
-
losses = torch.zeros((32,))
last_saved_file = "<none>"
@@ -304,10 +313,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
- optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
+ optimizer = torch.optim.AdamW(hypernetwork.weights(), lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
+ hypernetwork.train()
for i, entries in pbar:
hypernetwork.step = i + ititial_step
@@ -328,8 +337,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log losses[hypernetwork.step % losses.shape[0]] = loss.item()
- optimizer.zero_grad()
+ optimizer.zero_grad(set_to_none=True)
loss.backward()
+ del loss
optimizer.step()
mean_loss = losses.mean()
if torch.isnan(mean_loss):
@@ -346,44 +356,47 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log })
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
+ torch.cuda.empty_cache()
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
+ with torch.no_grad():
+ hypernetwork.eval()
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
- optimizer.zero_grad()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
-
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
-
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
-
- preview_text = p.prompt
-
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images)>0 else None
-
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
-
- if image is not None:
- shared.state.current_image = image
- image.save(last_saved_image)
- last_saved_image += f", prompt: {preview_text}"
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
+
+ preview_text = p.prompt
+
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images)>0 else None
+
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
+
+ if image is not None:
+ shared.state.current_image = image
+ image.save(last_saved_image)
+ last_saved_image += f", prompt: {preview_text}"
+
+ hypernetwork.train()
shared.state.job_no = hypernetwork.step
|