diff options
Diffstat (limited to 'modules/interrogate.py')
-rw-r--r-- | modules/interrogate.py | 58 |
1 files changed, 37 insertions, 21 deletions
diff --git a/modules/interrogate.py b/modules/interrogate.py index f62a4745..738d8ff7 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -1,4 +1,3 @@ -import contextlib
import os
import sys
import traceback
@@ -11,25 +10,27 @@ from torchvision import transforms from torchvision.transforms.functional import InterpolationMode
import modules.shared as shared
-from modules import devices, paths, lowvram
+from modules import devices, paths, lowvram, modelloader
blip_image_eval_size = 384
-blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
clip_model_name = 'ViT-L/14'
Category = namedtuple("Category", ["name", "topn", "items"])
re_topn = re.compile(r"\.top(\d+)\.")
+
class InterrogateModels:
blip_model = None
clip_model = None
clip_preprocess = None
categories = None
dtype = None
+ running_on_cpu = None
def __init__(self, content_dir):
self.categories = []
+ self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
if os.path.exists(content_dir):
for filename in os.listdir(content_dir):
@@ -44,7 +45,14 @@ class InterrogateModels: def load_blip_model(self):
import models.blip
- blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
+ files = modelloader.load_models(
+ model_path=os.path.join(paths.models_path, "BLIP"),
+ model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth',
+ ext_filter=[".pth"],
+ download_name='model_base_caption_capfilt_large.pth',
+ )
+
+ blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
blip_model.eval()
return blip_model
@@ -52,26 +60,30 @@ class InterrogateModels: def load_clip_model(self):
import clip
- model, preprocess = clip.load(clip_model_name)
+ if self.running_on_cpu:
+ model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path)
+ else:
+ model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path)
+
model.eval()
- model = model.to(shared.device)
+ model = model.to(devices.device_interrogate)
return model, preprocess
def load(self):
if self.blip_model is None:
self.blip_model = self.load_blip_model()
- if not shared.cmd_opts.no_half:
+ if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.blip_model = self.blip_model.half()
- self.blip_model = self.blip_model.to(shared.device)
+ self.blip_model = self.blip_model.to(devices.device_interrogate)
if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model()
- if not shared.cmd_opts.no_half:
+ if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.clip_model = self.clip_model.half()
- self.clip_model = self.clip_model.to(shared.device)
+ self.clip_model = self.clip_model.to(devices.device_interrogate)
self.dtype = next(self.clip_model.parameters()).dtype
@@ -98,11 +110,11 @@ class InterrogateModels: text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
top_count = min(top_count, len(text_array))
- text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(shared.device)
+ text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
text_features /= text_features.norm(dim=-1, keepdim=True)
- similarity = torch.zeros((1, len(text_array))).to(shared.device)
+ similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
for i in range(image_features.shape[0]):
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
similarity /= image_features.shape[0]
@@ -115,7 +127,7 @@ class InterrogateModels: transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
- ])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
+ ])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
with torch.no_grad():
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
@@ -123,8 +135,9 @@ class InterrogateModels: return caption[0]
def interrogate(self, pil_image):
- res = None
-
+ res = ""
+ shared.state.begin()
+ shared.state.job = 'interrogate'
try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
@@ -139,11 +152,10 @@ class InterrogateModels: res = caption
- cilp_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
+ clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
- precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
- with torch.no_grad(), precision_scope("cuda"):
- image_features = self.clip_model.encode_image(cilp_image).type(self.dtype)
+ with torch.no_grad(), devices.autocast():
+ image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
image_features /= image_features.norm(dim=-1, keepdim=True)
@@ -155,13 +167,17 @@ class InterrogateModels: for name, topn, items in self.categories:
matches = self.rank(image_features, items, top_count=topn)
for match, score in matches:
- res += ", " + match
+ if shared.opts.interrogate_return_ranks:
+ res += f", ({match}:{score/100:.3f})"
+ else:
+ res += ", " + match
except Exception:
- print(f"Error interrogating", file=sys.stderr)
+ print("Error interrogating", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
res += "<error>"
self.unload()
+ shared.state.end()
return res
|