diff options
Diffstat (limited to 'modules/interrogate.py')
-rw-r--r-- | modules/interrogate.py | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/modules/interrogate.py b/modules/interrogate.py index af858cc0..9263d65a 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -55,7 +55,7 @@ class InterrogateModels: model, preprocess = clip.load(clip_model_name)
model.eval()
- model = model.to(shared.device)
+ model = model.to(devices.device_interrogate)
return model, preprocess
@@ -65,14 +65,14 @@ class InterrogateModels: if not shared.cmd_opts.no_half:
self.blip_model = self.blip_model.half()
- self.blip_model = self.blip_model.to(shared.device)
+ self.blip_model = self.blip_model.to(devices.device_interrogate)
if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model()
if not shared.cmd_opts.no_half:
self.clip_model = self.clip_model.half()
- self.clip_model = self.clip_model.to(shared.device)
+ self.clip_model = self.clip_model.to(devices.device_interrogate)
self.dtype = next(self.clip_model.parameters()).dtype
@@ -99,11 +99,11 @@ class InterrogateModels: text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
top_count = min(top_count, len(text_array))
- text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(shared.device)
+ text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
text_features /= text_features.norm(dim=-1, keepdim=True)
- similarity = torch.zeros((1, len(text_array))).to(shared.device)
+ similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
for i in range(image_features.shape[0]):
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
similarity /= image_features.shape[0]
@@ -116,7 +116,7 @@ class InterrogateModels: transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
- ])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
+ ])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
with torch.no_grad():
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
@@ -140,7 +140,7 @@ class InterrogateModels: res = caption
- clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
+ clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
with torch.no_grad(), precision_scope("cuda"):
|