diff options
Diffstat (limited to 'modules/modelloader.py')
-rw-r--r-- | modules/modelloader.py | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/modules/modelloader.py b/modules/modelloader.py new file mode 100644 index 00000000..51b3ecd5 --- /dev/null +++ b/modules/modelloader.py @@ -0,0 +1,133 @@ +import os +import shutil +import importlib +from urllib.parse import urlparse + +from basicsr.utils.download_util import load_file_from_url + +from modules import shared +from modules.upscaler import Upscaler +from modules.paths import script_path, models_path + + +def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None) -> list: + """ + A one-and done loader to try finding the desired models in specified directories. + + @param download_name: Specify to download from model_url immediately. + @param model_url: If no other models are found, this will be downloaded on upscale. + @param model_path: The location to store/find models in. + @param command_path: A command-line argument to search for models in first. + @param ext_filter: An optional list of filename extensions to filter by + @return: A list of paths containing the desired model(s) + """ + output = [] + + if ext_filter is None: + ext_filter = [] + try: + places = [] + if command_path is not None and command_path != model_path: + pretrained_path = os.path.join(command_path, 'experiments/pretrained_models') + if os.path.exists(pretrained_path): + print(f"Appending path: {pretrained_path}") + places.append(pretrained_path) + elif os.path.exists(command_path): + places.append(command_path) + places.append(model_path) + for place in places: + if os.path.exists(place): + for file in os.listdir(place): + full_path = os.path.join(place, file) + if os.path.isdir(full_path): + continue + if len(ext_filter) != 0: + model_name, extension = os.path.splitext(file) + if extension not in ext_filter: + continue + if file not in output: + output.append(full_path) + if model_url is not None and len(output) == 0: + if download_name is not None: + dl = load_file_from_url(model_url, model_path, True, download_name) + output.append(dl) + else: + output.append(model_url) + except: + pass + return output + + +def friendly_name(file: str): + if "http" in file: + file = urlparse(file).path + + file = os.path.basename(file) + model_name, extension = os.path.splitext(file) + model_name = model_name.replace("_", " ").title() + return model_name + + +def cleanup_models(): + # This code could probably be more efficient if we used a tuple list or something to store the src/destinations + # and then enumerate that, but this works for now. In the future, it'd be nice to just have every "model" scaler + # somehow auto-register and just do these things... + root_path = script_path + src_path = models_path + dest_path = os.path.join(models_path, "Stable-diffusion") + move_files(src_path, dest_path, ".ckpt") + src_path = os.path.join(root_path, "ESRGAN") + dest_path = os.path.join(models_path, "ESRGAN") + move_files(src_path, dest_path) + src_path = os.path.join(root_path, "gfpgan") + dest_path = os.path.join(models_path, "GFPGAN") + move_files(src_path, dest_path) + src_path = os.path.join(root_path, "SwinIR") + dest_path = os.path.join(models_path, "SwinIR") + move_files(src_path, dest_path) + src_path = os.path.join(root_path, "repositories/latent-diffusion/experiments/pretrained_models/") + dest_path = os.path.join(models_path, "LDSR") + move_files(src_path, dest_path) + + +def move_files(src_path: str, dest_path: str, ext_filter: str = None): + try: + if not os.path.exists(dest_path): + os.makedirs(dest_path) + if os.path.exists(src_path): + for file in os.listdir(src_path): + fullpath = os.path.join(src_path, file) + if os.path.isfile(fullpath): + if ext_filter is not None: + if ext_filter not in file: + continue + print(f"Moving {file} from {src_path} to {dest_path}.") + try: + shutil.move(fullpath, dest_path) + except: + pass + if len(os.listdir(src_path)) == 0: + print(f"Removing empty folder: {src_path}") + shutil.rmtree(src_path, True) + except: + pass + + +def load_upscalers(): + datas = [] + for cls in Upscaler.__subclasses__(): + name = cls.__name__ + module_name = cls.__module__ + module = importlib.import_module(module_name) + class_ = getattr(module, name) + cmd_name = f"{name.lower().replace('upscaler', '')}-models-path" + opt_string = None + try: + opt_string = shared.opts.__getattr__(cmd_name) + except: + pass + scaler = class_(opt_string) + for child in scaler.scalers: + datas.append(child) + + shared.sd_upscalers = datas |