aboutsummaryrefslogtreecommitdiffstats
path: root/modules/models/diffusion/uni_pc/uni_pc.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/models/diffusion/uni_pc/uni_pc.py')
-rw-r--r--modules/models/diffusion/uni_pc/uni_pc.py32
1 files changed, 15 insertions, 17 deletions
diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py
index ec6b37da..31ee81a6 100644
--- a/modules/models/diffusion/uni_pc/uni_pc.py
+++ b/modules/models/diffusion/uni_pc/uni_pc.py
@@ -378,7 +378,8 @@ class UniPC:
condition=None,
unconditional_condition=None,
before_sample=None,
- after_sample=None
+ after_sample=None,
+ after_update=None
):
"""Construct a UniPC.
@@ -394,6 +395,7 @@ class UniPC:
self.unconditional_condition = unconditional_condition
self.before_sample = before_sample
self.after_sample = after_sample
+ self.after_update = after_update
def dynamic_thresholding_fn(self, x0, t=None):
"""
@@ -434,15 +436,6 @@ class UniPC:
noise = self.noise_prediction_fn(x, t)
dims = x.dim()
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
- from pprint import pp
- print("X:")
- pp(x)
- print("sigma_t:")
- pp(sigma_t)
- print("noise:")
- pp(noise)
- print("alpha_t:")
- pp(alpha_t)
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
if self.thresholding:
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
@@ -524,7 +517,7 @@ class UniPC:
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
- print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
+ #print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
ns = self.noise_schedule
assert order <= len(model_prev_list)
@@ -568,7 +561,7 @@ class UniPC:
A_p = C_inv_p
if use_corrector:
- print('using corrector')
+ #print('using corrector')
C_inv = torch.linalg.inv(C)
A_c = C_inv
@@ -627,7 +620,7 @@ class UniPC:
return x_t, model_t
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
- print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
+ #print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
ns = self.noise_schedule
assert order <= len(model_prev_list)
dims = x.dim()
@@ -695,7 +688,7 @@ class UniPC:
D1s = None
if use_corrector:
- print('using corrector')
+ #print('using corrector')
# for order 1, we use a simplified version
if order == 1:
rhos_c = torch.tensor([0.5], device=b.device)
@@ -755,8 +748,9 @@ class UniPC:
t_T = self.noise_schedule.T if t_start is None else t_start
device = x.device
if method == 'multistep':
- assert steps >= order
+ assert steps >= order, "UniPC order must be < sampling steps"
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
+ print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps")
assert timesteps.shape[0] - 1 == steps
with torch.no_grad():
vec_t = timesteps[0].expand((x.shape[0]))
@@ -768,6 +762,8 @@ class UniPC:
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
if model_x is None:
model_x = self.model_fn(x, vec_t)
+ if self.after_update is not None:
+ self.after_update(x, model_x)
model_prev_list.append(model_x)
t_prev_list.append(vec_t)
for step in range(order, steps + 1):
@@ -776,13 +772,15 @@ class UniPC:
step_order = min(order, steps + 1 - step)
else:
step_order = order
- print('this step order:', step_order)
+ #print('this step order:', step_order)
if step == steps:
- print('do not run corrector at the last step')
+ #print('do not run corrector at the last step')
use_corrector = False
else:
use_corrector = True
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
+ if self.after_update is not None:
+ self.after_update(x, model_x)
for i in range(order - 1):
t_prev_list[i] = t_prev_list[i + 1]
model_prev_list[i] = model_prev_list[i + 1]