aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_hijack.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/sd_hijack.py')
-rw-r--r--modules/sd_hijack.py97
1 files changed, 72 insertions, 25 deletions
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 437acce4..f07ec041 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -8,7 +8,7 @@ from torch import einsum
from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
-from modules import prompt_parser, devices, sd_hijack_optimizations, shared, hypernetwork
+from modules import prompt_parser, devices, sd_hijack_optimizations, shared
from modules.shared import opts, device, cmd_opts
import ldm.modules.attention
@@ -23,7 +23,7 @@ def apply_optimizations():
ldm.modules.diffusionmodules.model.nonlinearity = silu
- if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and torch.cuda.get_device_capability(shared.device) == (8, 6)):
+ if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (8, 6)):
print("Applying xformers cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
@@ -37,16 +37,15 @@ def apply_optimizations():
def undo_optimizations():
+ from modules.hypernetworks import hypernetwork
+
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
def get_target_prompt_token_count(token_count):
- if token_count < 75:
- return 75
-
- return math.ceil(token_count / 10) * 10
+ return math.ceil(max(token_count, 1) / 75) * 75
class StableDiffusionModelHijack:
@@ -110,6 +109,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
self.tokenizer = wrapped.tokenizer
self.token_mults = {}
+ self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
+
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
@@ -127,7 +128,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
self.token_mults[ident] = mult
def tokenize_line(self, line, used_custom_terms, hijack_comments):
- id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id
if opts.enable_emphasis:
@@ -140,6 +140,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
fixes = []
remade_tokens = []
multipliers = []
+ last_comma = -1
for tokens, (text, weight) in zip(tokenized, parsed):
i = 0
@@ -148,13 +149,33 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
+ if token == self.comma_token:
+ last_comma = len(remade_tokens)
+ elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
+ last_comma += 1
+ reloc_tokens = remade_tokens[last_comma:]
+ reloc_mults = multipliers[last_comma:]
+
+ remade_tokens = remade_tokens[:last_comma]
+ length = len(remade_tokens)
+
+ rem = int(math.ceil(length / 75)) * 75 - length
+ remade_tokens += [id_end] * rem + reloc_tokens
+ multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
+
if embedding is None:
remade_tokens.append(token)
multipliers.append(weight)
i += 1
else:
emb_len = int(embedding.vec.shape[0])
- fixes.append((len(remade_tokens), embedding))
+ iteration = len(remade_tokens) // 75
+ if (len(remade_tokens) + emb_len) // 75 != iteration:
+ rem = (75 * (iteration + 1) - len(remade_tokens))
+ remade_tokens += [id_end] * rem
+ multipliers += [1.0] * rem
+ iteration += 1
+ fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
remade_tokens += [0] * emb_len
multipliers += [weight] * emb_len
used_custom_terms.append((embedding.name, embedding.checksum()))
@@ -162,10 +183,10 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
token_count = len(remade_tokens)
prompt_target_length = get_target_prompt_token_count(token_count)
- tokens_to_add = prompt_target_length - len(remade_tokens) + 1
+ tokens_to_add = prompt_target_length - len(remade_tokens)
- remade_tokens = [id_start] + remade_tokens + [id_end] * tokens_to_add
- multipliers = [1.0] + multipliers + [1.0] * tokens_to_add
+ remade_tokens = remade_tokens + [id_end] * tokens_to_add
+ multipliers = multipliers + [1.0] * tokens_to_add
return remade_tokens, fixes, multipliers, token_count
@@ -260,29 +281,55 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
-
+
def forward(self, text):
-
- if opts.use_old_emphasis_implementation:
+ use_old = opts.use_old_emphasis_implementation
+ if use_old:
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
else:
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
- self.hijack.fixes = hijack_fixes
self.hijack.comments += hijack_comments
if len(used_custom_terms) > 0:
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
+
+ if use_old:
+ self.hijack.fixes = hijack_fixes
+ return self.process_tokens(remade_batch_tokens, batch_multipliers)
+
+ z = None
+ i = 0
+ while max(map(len, remade_batch_tokens)) != 0:
+ rem_tokens = [x[75:] for x in remade_batch_tokens]
+ rem_multipliers = [x[75:] for x in batch_multipliers]
+
+ self.hijack.fixes = []
+ for unfiltered in hijack_fixes:
+ fixes = []
+ for fix in unfiltered:
+ if fix[0] == i:
+ fixes.append(fix[1])
+ self.hijack.fixes.append(fixes)
+
+ z1 = self.process_tokens([x[:75] for x in remade_batch_tokens], [x[:75] for x in batch_multipliers])
+ z = z1 if z is None else torch.cat((z, z1), axis=-2)
+
+ remade_batch_tokens = rem_tokens
+ batch_multipliers = rem_multipliers
+ i += 1
+
+ return z
+
+
+ def process_tokens(self, remade_batch_tokens, batch_multipliers):
+ if not opts.use_old_emphasis_implementation:
+ remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
+ batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
+
+ tokens = torch.asarray(remade_batch_tokens).to(device)
+ outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
- target_token_count = get_target_prompt_token_count(token_count) + 2
-
- position_ids_array = [min(x, 75) for x in range(target_token_count-1)] + [76]
- position_ids = torch.asarray(position_ids_array, device=devices.device).expand((1, -1))
-
- remade_batch_tokens_of_same_length = [x + [self.wrapped.tokenizer.eos_token_id] * (target_token_count - len(x)) for x in remade_batch_tokens]
- tokens = torch.asarray(remade_batch_tokens_of_same_length).to(device)
-
- outputs = self.wrapped.transformer(input_ids=tokens, position_ids=position_ids, output_hidden_states=-opts.CLIP_stop_at_last_layers)
if opts.CLIP_stop_at_last_layers > 1:
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
z = self.wrapped.transformer.text_model.final_layer_norm(z)
@@ -290,7 +337,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
z = outputs.last_hidden_state
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
- batch_multipliers_of_same_length = [x + [1.0] * (target_token_count - len(x)) for x in batch_multipliers]
+ batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(device)
original_mean = z.mean()
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)