aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_samplers.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/sd_samplers.py')
-rw-r--r--modules/sd_samplers.py16
1 files changed, 11 insertions, 5 deletions
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index fc0c94b4..dff89c09 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -4,7 +4,6 @@ import torch
import tqdm
from PIL import Image
import inspect
-
import k_diffusion.sampling
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
@@ -23,6 +22,8 @@ samplers_k_diffusion = [
('Heun', 'sample_heun', ['k_heun']),
('DPM2', 'sample_dpm_2', ['k_dpm_2']),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']),
+ ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']),
+ ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']),
]
samplers_data_k_diffusion = [
@@ -36,7 +37,7 @@ samplers = [
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []),
]
-samplers_for_img2img = [x for x in samplers if x.name != 'PLMS']
+samplers_for_img2img = [x for x in samplers if x.name not in ['PLMS', 'DPM fast', 'DPM adaptive']]
sampler_extra_params = {
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
@@ -309,8 +310,13 @@ class KDiffusionSampler:
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
-
- samples = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
-
+ if 'sigma_min' in inspect.signature(self.func).parameters:
+ extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
+ extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
+ if 'n' in inspect.signature(self.func).parameters:
+ extra_params_kwargs['n'] = steps
+ else:
+ extra_params_kwargs['sigmas'] = sigmas
+ samples = self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)
return samples