aboutsummaryrefslogtreecommitdiffstats
path: root/modules/swinir_model.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/swinir_model.py')
-rw-r--r--modules/swinir_model.py123
1 files changed, 123 insertions, 0 deletions
diff --git a/modules/swinir_model.py b/modules/swinir_model.py
new file mode 100644
index 00000000..e86d0789
--- /dev/null
+++ b/modules/swinir_model.py
@@ -0,0 +1,123 @@
+import sys
+import traceback
+import cv2
+import os
+import contextlib
+import numpy as np
+from PIL import Image
+import torch
+import modules.images
+from modules.shared import cmd_opts, opts, device
+from modules.swinir_arch import SwinIR as net
+
+precision_scope = (
+ torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
+)
+
+
+def load_model(filename, scale=4):
+ model = net(
+ upscale=scale,
+ in_chans=3,
+ img_size=64,
+ window_size=8,
+ img_range=1.0,
+ depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
+ embed_dim=240,
+ num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
+ mlp_ratio=2,
+ upsampler="nearest+conv",
+ resi_connection="3conv",
+ )
+
+ pretrained_model = torch.load(filename)
+ model.load_state_dict(pretrained_model["params_ema"], strict=True)
+ if not cmd_opts.no_half:
+ model = model.half()
+ return model
+
+
+def load_models(dirname):
+ for file in os.listdir(dirname):
+ path = os.path.join(dirname, file)
+ model_name, extension = os.path.splitext(file)
+
+ if extension != ".pt" and extension != ".pth":
+ continue
+
+ try:
+ modules.shared.sd_upscalers.append(UpscalerSwin(path, model_name))
+ except Exception:
+ print(f"Error loading SwinIR model: {path}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+
+def upscale(
+ img,
+ model,
+ tile=opts.SWIN_tile,
+ tile_overlap=opts.SWIN_tile_overlap,
+ window_size=8,
+ scale=4,
+):
+ img = np.array(img)
+ img = img[:, :, ::-1]
+ img = np.moveaxis(img, 2, 0) / 255
+ img = torch.from_numpy(img).float()
+ img = img.unsqueeze(0).to(device)
+ with torch.no_grad(), precision_scope("cuda"):
+ _, _, h_old, w_old = img.size()
+ h_pad = (h_old // window_size + 1) * window_size - h_old
+ w_pad = (w_old // window_size + 1) * window_size - w_old
+ img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
+ img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
+ output = inference(img, model, tile, tile_overlap, window_size, scale)
+ output = output[..., : h_old * scale, : w_old * scale]
+ output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
+ if output.ndim == 3:
+ output = np.transpose(
+ output[[2, 1, 0], :, :], (1, 2, 0)
+ ) # CHW-RGB to HCW-BGR
+ output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
+ return Image.fromarray(output, "RGB")
+
+
+def inference(img, model, tile, tile_overlap, window_size, scale):
+ # test the image tile by tile
+ b, c, h, w = img.size()
+ tile = min(tile, h, w)
+ assert tile % window_size == 0, "tile size should be a multiple of window_size"
+ sf = scale
+
+ stride = tile - tile_overlap
+ h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
+ w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
+ E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
+ W = torch.zeros_like(E, dtype=torch.half, device=device)
+
+ for h_idx in h_idx_list:
+ for w_idx in w_idx_list:
+ in_patch = img[..., h_idx : h_idx + tile, w_idx : w_idx + tile]
+ out_patch = model(in_patch)
+ out_patch_mask = torch.ones_like(out_patch)
+
+ E[
+ ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf
+ ].add_(out_patch)
+ W[
+ ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf
+ ].add_(out_patch_mask)
+ output = E.div_(W)
+
+ return output
+
+
+class UpscalerSwin(modules.images.Upscaler):
+ def __init__(self, filename, title):
+ self.name = title
+ self.model = load_model(filename)
+
+ def do_upscale(self, img):
+ model = self.model.to(device)
+ img = upscale(img, model)
+ return img