aboutsummaryrefslogtreecommitdiffstats
path: root/modules
diff options
context:
space:
mode:
Diffstat (limited to 'modules')
-rw-r--r--modules/aesthetic_clip.py241
-rw-r--r--modules/api/api.py185
-rw-r--r--modules/api/models.py167
-rw-r--r--modules/api/processing.py99
-rw-r--r--modules/bsrgan_model.py76
-rw-r--r--modules/bsrgan_model_arch.py102
-rw-r--r--modules/deepbooru.py5
-rw-r--r--modules/devices.py23
-rw-r--r--modules/esrgan_model.py192
-rw-r--r--modules/esrgan_model_arch.py487
-rw-r--r--modules/extensions.py83
-rw-r--r--modules/extras.py178
-rw-r--r--modules/generation_parameters_copypaste.py122
-rw-r--r--modules/hypernetworks/hypernetwork.py243
-rw-r--r--modules/hypernetworks/ui.py13
-rw-r--r--modules/images.py229
-rw-r--r--modules/images_history.py183
-rw-r--r--modules/img2img.py15
-rw-r--r--modules/lowvram.py9
-rw-r--r--modules/processing.py238
-rw-r--r--modules/script_callbacks.py132
-rw-r--r--modules/scripts.py251
-rw-r--r--modules/scunet_model.py3
-rw-r--r--modules/sd_hijack.py1
-rw-r--r--modules/sd_models.py26
-rw-r--r--modules/sd_samplers.py19
-rw-r--r--modules/shared.py116
-rw-r--r--modules/swinir_model.py12
-rw-r--r--modules/textual_inversion/autocrop.py341
-rw-r--r--modules/textual_inversion/dataset.py6
-rw-r--r--modules/textual_inversion/learn_schedule.py37
-rw-r--r--modules/textual_inversion/preprocess.py38
-rw-r--r--modules/textual_inversion/textual_inversion.py119
-rw-r--r--modules/txt2img.py5
-rw-r--r--modules/ui.py548
-rw-r--r--modules/ui_extensions.py172
36 files changed, 3033 insertions, 1683 deletions
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py
deleted file mode 100644
index 8c828541..00000000
--- a/modules/aesthetic_clip.py
+++ /dev/null
@@ -1,241 +0,0 @@
-import copy
-import itertools
-import os
-from pathlib import Path
-import html
-import gc
-
-import gradio as gr
-import torch
-from PIL import Image
-from torch import optim
-
-from modules import shared
-from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer
-from tqdm.auto import tqdm, trange
-from modules.shared import opts, device
-
-
-def get_all_images_in_folder(folder):
- return [os.path.join(folder, f) for f in os.listdir(folder) if
- os.path.isfile(os.path.join(folder, f)) and check_is_valid_image_file(f)]
-
-
-def check_is_valid_image_file(filename):
- return filename.lower().endswith(('.png', '.jpg', '.jpeg', ".gif", ".tiff", ".webp"))
-
-
-def batched(dataset, total, n=1):
- for ndx in range(0, total, n):
- yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
-
-
-def iter_to_batched(iterable, n=1):
- it = iter(iterable)
- while True:
- chunk = tuple(itertools.islice(it, n))
- if not chunk:
- return
- yield chunk
-
-
-def create_ui():
- import modules.ui
-
- with gr.Group():
- with gr.Accordion("Open for Clip Aesthetic!", open=False):
- with gr.Row():
- aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight",
- value=0.9)
- aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
-
- with gr.Row():
- aesthetic_lr = gr.Textbox(label='Aesthetic learning rate',
- placeholder="Aesthetic learning rate", value="0.0001")
- aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
- aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()),
- label="Aesthetic imgs embedding",
- value="None")
-
- modules.ui.create_refresh_button(aesthetic_imgs, shared.update_aesthetic_embeddings, lambda: {"choices": sorted(shared.aesthetic_embeddings.keys())}, "refresh_aesthetic_embeddings")
-
- with gr.Row():
- aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs',
- placeholder="This text is used to rotate the feature space of the imgs embs",
- value="")
- aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01,
- value=0.1)
- aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
-
- return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative
-
-
-aesthetic_clip_model = None
-
-
-def aesthetic_clip():
- global aesthetic_clip_model
-
- if aesthetic_clip_model is None or aesthetic_clip_model.name_or_path != shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path:
- aesthetic_clip_model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path)
- aesthetic_clip_model.cpu()
-
- return aesthetic_clip_model
-
-
-def generate_imgs_embd(name, folder, batch_size):
- model = aesthetic_clip().to(device)
- processor = CLIPProcessor.from_pretrained(model.name_or_path)
-
- with torch.no_grad():
- embs = []
- for paths in tqdm(iter_to_batched(get_all_images_in_folder(folder), batch_size),
- desc=f"Generating embeddings for {name}"):
- if shared.state.interrupted:
- break
- inputs = processor(images=[Image.open(path) for path in paths], return_tensors="pt").to(device)
- outputs = model.get_image_features(**inputs).cpu()
- embs.append(torch.clone(outputs))
- inputs.to("cpu")
- del inputs, outputs
-
- embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True)
-
- # The generated embedding will be located here
- path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt")
- torch.save(embs, path)
-
- model.cpu()
- del processor
- del embs
- gc.collect()
- torch.cuda.empty_cache()
- res = f"""
- Done generating embedding for {name}!
- Aesthetic embedding saved to {html.escape(path)}
- """
- shared.update_aesthetic_embeddings()
- return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding",
- value="None"), \
- gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()),
- label="Imgs embedding",
- value="None"), res, ""
-
-
-def slerp(low, high, val):
- low_norm = low / torch.norm(low, dim=1, keepdim=True)
- high_norm = high / torch.norm(high, dim=1, keepdim=True)
- omega = torch.acos((low_norm * high_norm).sum(1))
- so = torch.sin(omega)
- res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
- return res
-
-
-class AestheticCLIP:
- def __init__(self):
- self.skip = False
- self.aesthetic_steps = 0
- self.aesthetic_weight = 0
- self.aesthetic_lr = 0
- self.slerp = False
- self.aesthetic_text_negative = ""
- self.aesthetic_slerp_angle = 0
- self.aesthetic_imgs_text = ""
-
- self.image_embs_name = None
- self.image_embs = None
- self.load_image_embs(None)
-
- def set_aesthetic_params(self, p, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
- aesthetic_slerp=True, aesthetic_imgs_text="",
- aesthetic_slerp_angle=0.15,
- aesthetic_text_negative=False):
- self.aesthetic_imgs_text = aesthetic_imgs_text
- self.aesthetic_slerp_angle = aesthetic_slerp_angle
- self.aesthetic_text_negative = aesthetic_text_negative
- self.slerp = aesthetic_slerp
- self.aesthetic_lr = aesthetic_lr
- self.aesthetic_weight = aesthetic_weight
- self.aesthetic_steps = aesthetic_steps
- self.load_image_embs(image_embs_name)
-
- if self.image_embs_name is not None:
- p.extra_generation_params.update({
- "Aesthetic LR": aesthetic_lr,
- "Aesthetic weight": aesthetic_weight,
- "Aesthetic steps": aesthetic_steps,
- "Aesthetic embedding": self.image_embs_name,
- "Aesthetic slerp": aesthetic_slerp,
- "Aesthetic text": aesthetic_imgs_text,
- "Aesthetic text negative": aesthetic_text_negative,
- "Aesthetic slerp angle": aesthetic_slerp_angle,
- })
-
- def set_skip(self, skip):
- self.skip = skip
-
- def load_image_embs(self, image_embs_name):
- if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None":
- image_embs_name = None
- self.image_embs_name = None
- if image_embs_name is not None and self.image_embs_name != image_embs_name:
- self.image_embs_name = image_embs_name
- self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device)
- self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
- self.image_embs.requires_grad_(False)
-
- def __call__(self, z, remade_batch_tokens):
- if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None:
- tokenizer = shared.sd_model.cond_stage_model.tokenizer
- if not opts.use_old_emphasis_implementation:
- remade_batch_tokens = [
- [tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in
- remade_batch_tokens]
-
- tokens = torch.asarray(remade_batch_tokens).to(device)
-
- model = copy.deepcopy(aesthetic_clip()).to(device)
- model.requires_grad_(True)
- if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0:
- text_embs_2 = model.get_text_features(
- **tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device))
- if self.aesthetic_text_negative:
- text_embs_2 = self.image_embs - text_embs_2
- text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True)
- img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle)
- else:
- img_embs = self.image_embs
-
- with torch.enable_grad():
-
- # We optimize the model to maximize the similarity
- optimizer = optim.Adam(
- model.text_model.parameters(), lr=self.aesthetic_lr
- )
-
- for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"):
- text_embs = model.get_text_features(input_ids=tokens)
- text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
- sim = text_embs @ img_embs.T
- loss = -sim
- optimizer.zero_grad()
- loss.mean().backward()
- optimizer.step()
-
- zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
- if opts.CLIP_stop_at_last_layers > 1:
- zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
- zn = model.text_model.final_layer_norm(zn)
- else:
- zn = zn.last_hidden_state
- model.cpu()
- del model
- gc.collect()
- torch.cuda.empty_cache()
- zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1)
- if self.slerp:
- z = slerp(z, zn, self.aesthetic_weight)
- else:
- z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
-
- return z
diff --git a/modules/api/api.py b/modules/api/api.py
index 5b0c934e..6c06d449 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -1,22 +1,32 @@
-from modules.api.processing import StableDiffusionProcessingAPI
-from modules.processing import StableDiffusionProcessingTxt2Img, process_images
-from modules.sd_samplers import all_samplers
-from modules.extras import run_pnginfo
-import modules.shared as shared
+import time
import uvicorn
-from fastapi import Body, APIRouter, HTTPException
-from fastapi.responses import JSONResponse
-from pydantic import BaseModel, Field, Json
-import json
-import io
-import base64
+from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
+from fastapi import APIRouter, Depends, HTTPException
+import modules.shared as shared
+from modules import devices
+from modules.api.models import *
+from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
+from modules.sd_samplers import all_samplers
+from modules.extras import run_extras, run_pnginfo
+
+
+def upscaler_to_index(name: str):
+ try:
+ return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
+ except:
+ raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
+
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
-class TextToImageResponse(BaseModel):
- images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
- parameters: Json
- info: Json
+
+def setUpscalers(req: dict):
+ reqDict = vars(req)
+ reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
+ reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
+ reqDict.pop('upscaler_1')
+ reqDict.pop('upscaler_2')
+ return reqDict
class Api:
@@ -24,16 +34,21 @@ class Api:
self.router = APIRouter()
self.app = app
self.queue_lock = queue_lock
- self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
+ self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
+ self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
+ self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
+ self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
+ self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
+ self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
- def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ):
+ def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
-
+
if sampler_index is None:
- raise HTTPException(status_code=404, detail="Sampler not found")
-
+ raise HTTPException(status_code=404, detail="Sampler not found")
+
populate = txt2imgreq.copy(update={ # Override __init__ params
- "sd_model": shared.sd_model,
+ "sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True
@@ -41,27 +56,125 @@ class Api:
)
p = StableDiffusionProcessingTxt2Img(**vars(populate))
# Override object param
+
+ shared.state.begin()
+
with self.queue_lock:
processed = process_images(p)
-
- b64images = []
- for i in processed.images:
- buffer = io.BytesIO()
- i.save(buffer, format="png")
- b64images.append(base64.b64encode(buffer.getvalue()))
- return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info))
-
-
+ shared.state.end()
+
+ b64images = list(map(encode_pil_to_base64, processed.images))
+
+ return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
+
+ def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
+ sampler_index = sampler_to_index(img2imgreq.sampler_index)
+
+ if sampler_index is None:
+ raise HTTPException(status_code=404, detail="Sampler not found")
+
+
+ init_images = img2imgreq.init_images
+ if init_images is None:
+ raise HTTPException(status_code=404, detail="Init image not found")
+
+ mask = img2imgreq.mask
+ if mask:
+ mask = decode_base64_to_image(mask)
+
+
+ populate = img2imgreq.copy(update={ # Override __init__ params
+ "sd_model": shared.sd_model,
+ "sampler_index": sampler_index[0],
+ "do_not_save_samples": True,
+ "do_not_save_grid": True,
+ "mask": mask
+ }
+ )
+ p = StableDiffusionProcessingImg2Img(**vars(populate))
+
+ imgs = []
+ for img in init_images:
+ img = decode_base64_to_image(img)
+ imgs = [img] * p.batch_size
+
+ p.init_images = imgs
+
+ shared.state.begin()
+
+ with self.queue_lock:
+ processed = process_images(p)
+
+ shared.state.end()
+
+ b64images = list(map(encode_pil_to_base64, processed.images))
+
+ if (not img2imgreq.include_init_images):
+ img2imgreq.init_images = None
+ img2imgreq.mask = None
+
+ return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
+
+ def extras_single_image_api(self, req: ExtrasSingleImageRequest):
+ reqDict = setUpscalers(req)
+
+ reqDict['image'] = decode_base64_to_image(reqDict['image'])
+
+ with self.queue_lock:
+ result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict)
+
+ return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
+
+ def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
+ reqDict = setUpscalers(req)
+
+ def prepareFiles(file):
+ file = decode_base64_to_file(file.data, file_path=file.name)
+ file.orig_name = file.name
+ return file
+
+ reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
+ reqDict.pop('imageList')
+
+ with self.queue_lock:
+ result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict)
+
+ return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
+
+ def pnginfoapi(self, req: PNGInfoRequest):
+ if(not req.image.strip()):
+ return PNGInfoResponse(info="")
+
+ result = run_pnginfo(decode_base64_to_image(req.image.strip()))
+
+ return PNGInfoResponse(info=result[1])
+
+ def progressapi(self, req: ProgressRequest = Depends()):
+ # copy from check_progress_call of ui.py
+
+ if shared.state.job_count == 0:
+ return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict())
+
+ # avoid dividing zero
+ progress = 0.01
+
+ if shared.state.job_count > 0:
+ progress += shared.state.job_no / shared.state.job_count
+ if shared.state.sampling_steps > 0:
+ progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
+
+ time_since_start = time.time() - shared.state.time_start
+ eta = (time_since_start/progress)
+ eta_relative = eta-time_since_start
- def img2imgapi(self):
- raise NotImplementedError
+ progress = min(progress, 1)
- def extrasapi(self):
- raise NotImplementedError
+ current_image = None
+ if shared.state.current_image and not req.skip_current_image:
+ current_image = encode_pil_to_base64(shared.state.current_image)
- def pnginfoapi(self):
- raise NotImplementedError
+ return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image)
def launch(self, server_name, port):
self.app.include_router(self.router)
diff --git a/modules/api/models.py b/modules/api/models.py
new file mode 100644
index 00000000..9ee42a17
--- /dev/null
+++ b/modules/api/models.py
@@ -0,0 +1,167 @@
+import inspect
+from click import prompt
+from pydantic import BaseModel, Field, create_model
+from typing import Any, Optional
+from typing_extensions import Literal
+from inflection import underscore
+from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
+from modules.shared import sd_upscalers
+
+API_NOT_ALLOWED = [
+ "self",
+ "kwargs",
+ "sd_model",
+ "outpath_samples",
+ "outpath_grids",
+ "sampler_index",
+ "do_not_save_samples",
+ "do_not_save_grid",
+ "extra_generation_params",
+ "overlay_images",
+ "do_not_reload_embeddings",
+ "seed_enable_extras",
+ "prompt_for_display",
+ "sampler_noise_scheduler_override",
+ "ddim_discretize"
+]
+
+class ModelDef(BaseModel):
+ """Assistance Class for Pydantic Dynamic Model Generation"""
+
+ field: str
+ field_alias: str
+ field_type: Any
+ field_value: Any
+ field_exclude: bool = False
+
+
+class PydanticModelGenerator:
+ """
+ Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
+ source_data is a snapshot of the default values produced by the class
+ params are the names of the actual keys required by __init__
+ """
+
+ def __init__(
+ self,
+ model_name: str = None,
+ class_instance = None,
+ additional_fields = None,
+ ):
+ def field_type_generator(k, v):
+ # field_type = str if not overrides.get(k) else overrides[k]["type"]
+ # print(k, v.annotation, v.default)
+ field_type = v.annotation
+
+ return Optional[field_type]
+
+ def merge_class_params(class_):
+ all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
+ parameters = {}
+ for classes in all_classes:
+ parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
+ return parameters
+
+
+ self._model_name = model_name
+ self._class_data = merge_class_params(class_instance)
+ self._model_def = [
+ ModelDef(
+ field=underscore(k),
+ field_alias=k,
+ field_type=field_type_generator(k, v),
+ field_value=v.default
+ )
+ for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
+ ]
+
+ for fields in additional_fields:
+ self._model_def.append(ModelDef(
+ field=underscore(fields["key"]),
+ field_alias=fields["key"],
+ field_type=fields["type"],
+ field_value=fields["default"],
+ field_exclude=fields["exclude"] if "exclude" in fields else False))
+
+ def generate_model(self):
+ """
+ Creates a pydantic BaseModel
+ from the json and overrides provided at initialization
+ """
+ fields = {
+ d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def
+ }
+ DynamicModel = create_model(self._model_name, **fields)
+ DynamicModel.__config__.allow_population_by_field_name = True
+ DynamicModel.__config__.allow_mutation = True
+ return DynamicModel
+
+StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
+ "StableDiffusionProcessingTxt2Img",
+ StableDiffusionProcessingTxt2Img,
+ [{"key": "sampler_index", "type": str, "default": "Euler"}]
+).generate_model()
+
+StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
+ "StableDiffusionProcessingImg2Img",
+ StableDiffusionProcessingImg2Img,
+ [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
+).generate_model()
+
+class TextToImageResponse(BaseModel):
+ images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
+ parameters: dict
+ info: str
+
+class ImageToImageResponse(BaseModel):
+ images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
+ parameters: dict
+ info: str
+
+class ExtrasBaseRequest(BaseModel):
+ resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
+ show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?")
+ gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
+ codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
+ codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
+ upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.")
+ upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
+ upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
+ upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?")
+ upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
+ upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
+ extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
+
+class ExtraBaseResponse(BaseModel):
+ html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
+
+class ExtrasSingleImageRequest(ExtrasBaseRequest):
+ image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
+
+class ExtrasSingleImageResponse(ExtraBaseResponse):
+ image: str = Field(default=None, title="Image", description="The generated image in base64 format.")
+
+class FileData(BaseModel):
+ data: str = Field(title="File data", description="Base64 representation of the file")
+ name: str = Field(title="File name")
+
+class ExtrasBatchImagesRequest(ExtrasBaseRequest):
+ imageList: list[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
+
+class ExtrasBatchImagesResponse(ExtraBaseResponse):
+ images: list[str] = Field(title="Images", description="The generated images in base64 format.")
+
+class PNGInfoRequest(BaseModel):
+ image: str = Field(title="Image", description="The base64 encoded PNG image")
+
+class PNGInfoResponse(BaseModel):
+ info: str = Field(title="Image info", description="A string with all the info the image had")
+
+class ProgressRequest(BaseModel):
+ skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
+
+class ProgressResponse(BaseModel):
+ progress: float = Field(title="Progress", description="The progress with a range of 0 to 1")
+ eta_relative: float = Field(title="ETA in secs")
+ state: dict = Field(title="State", description="The current state snapshot")
+ current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
diff --git a/modules/api/processing.py b/modules/api/processing.py
deleted file mode 100644
index 4c541241..00000000
--- a/modules/api/processing.py
+++ /dev/null
@@ -1,99 +0,0 @@
-from inflection import underscore
-from typing import Any, Dict, Optional
-from pydantic import BaseModel, Field, create_model
-from modules.processing import StableDiffusionProcessingTxt2Img
-import inspect
-
-
-API_NOT_ALLOWED = [
- "self",
- "kwargs",
- "sd_model",
- "outpath_samples",
- "outpath_grids",
- "sampler_index",
- "do_not_save_samples",
- "do_not_save_grid",
- "extra_generation_params",
- "overlay_images",
- "do_not_reload_embeddings",
- "seed_enable_extras",
- "prompt_for_display",
- "sampler_noise_scheduler_override",
- "ddim_discretize"
-]
-
-class ModelDef(BaseModel):
- """Assistance Class for Pydantic Dynamic Model Generation"""
-
- field: str
- field_alias: str
- field_type: Any
- field_value: Any
-
-
-class PydanticModelGenerator:
- """
- Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
- source_data is a snapshot of the default values produced by the class
- params are the names of the actual keys required by __init__
- """
-
- def __init__(
- self,
- model_name: str = None,
- class_instance = None,
- additional_fields = None,
- ):
- def field_type_generator(k, v):
- # field_type = str if not overrides.get(k) else overrides[k]["type"]
- # print(k, v.annotation, v.default)
- field_type = v.annotation
-
- return Optional[field_type]
-
- def merge_class_params(class_):
- all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
- parameters = {}
- for classes in all_classes:
- parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
- return parameters
-
-
- self._model_name = model_name
- self._class_data = merge_class_params(class_instance)
- self._model_def = [
- ModelDef(
- field=underscore(k),
- field_alias=k,
- field_type=field_type_generator(k, v),
- field_value=v.default
- )
- for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
- ]
-
- for fields in additional_fields:
- self._model_def.append(ModelDef(
- field=underscore(fields["key"]),
- field_alias=fields["key"],
- field_type=fields["type"],
- field_value=fields["default"]))
-
- def generate_model(self):
- """
- Creates a pydantic BaseModel
- from the json and overrides provided at initialization
- """
- fields = {
- d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
- }
- DynamicModel = create_model(self._model_name, **fields)
- DynamicModel.__config__.allow_population_by_field_name = True
- DynamicModel.__config__.allow_mutation = True
- return DynamicModel
-
-StableDiffusionProcessingAPI = PydanticModelGenerator(
- "StableDiffusionProcessingTxt2Img",
- StableDiffusionProcessingTxt2Img,
- [{"key": "sampler_index", "type": str, "default": "Euler"}]
-).generate_model() \ No newline at end of file
diff --git a/modules/bsrgan_model.py b/modules/bsrgan_model.py
deleted file mode 100644
index 737e1a76..00000000
--- a/modules/bsrgan_model.py
+++ /dev/null
@@ -1,76 +0,0 @@
-import os.path
-import sys
-import traceback
-
-import PIL.Image
-import numpy as np
-import torch
-from basicsr.utils.download_util import load_file_from_url
-
-import modules.upscaler
-from modules import devices, modelloader
-from modules.bsrgan_model_arch import RRDBNet
-
-
-class UpscalerBSRGAN(modules.upscaler.Upscaler):
- def __init__(self, dirname):
- self.name = "BSRGAN"
- self.model_name = "BSRGAN 4x"
- self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth"
- self.user_path = dirname
- super().__init__()
- model_paths = self.find_models(ext_filter=[".pt", ".pth"])
- scalers = []
- if len(model_paths) == 0:
- scaler_data = modules.upscaler.UpscalerData(self.model_name, self.model_url, self, 4)
- scalers.append(scaler_data)
- for file in model_paths:
- if "http" in file:
- name = self.model_name
- else:
- name = modelloader.friendly_name(file)
- try:
- scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
- scalers.append(scaler_data)
- except Exception:
- print(f"Error loading BSRGAN model: {file}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- self.scalers = scalers
-
- def do_upscale(self, img: PIL.Image, selected_file):
- torch.cuda.empty_cache()
- model = self.load_model(selected_file)
- if model is None:
- return img
- model.to(devices.device_bsrgan)
- torch.cuda.empty_cache()
- img = np.array(img)
- img = img[:, :, ::-1]
- img = np.moveaxis(img, 2, 0) / 255
- img = torch.from_numpy(img).float()
- img = img.unsqueeze(0).to(devices.device_bsrgan)
- with torch.no_grad():
- output = model(img)
- output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
- output = 255. * np.moveaxis(output, 0, 2)
- output = output.astype(np.uint8)
- output = output[:, :, ::-1]
- torch.cuda.empty_cache()
- return PIL.Image.fromarray(output, 'RGB')
-
- def load_model(self, path: str):
- if "http" in path:
- filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
- progress=True)
- else:
- filename = path
- if not os.path.exists(filename) or filename is None:
- print(f"BSRGAN: Unable to load model from {filename}", file=sys.stderr)
- return None
- model = RRDBNet(in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4) # define network
- model.load_state_dict(torch.load(filename), strict=True)
- model.eval()
- for k, v in model.named_parameters():
- v.requires_grad = False
- return model
-
diff --git a/modules/bsrgan_model_arch.py b/modules/bsrgan_model_arch.py
deleted file mode 100644
index cb4d1c13..00000000
--- a/modules/bsrgan_model_arch.py
+++ /dev/null
@@ -1,102 +0,0 @@
-import functools
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-import torch.nn.init as init
-
-
-def initialize_weights(net_l, scale=1):
- if not isinstance(net_l, list):
- net_l = [net_l]
- for net in net_l:
- for m in net.modules():
- if isinstance(m, nn.Conv2d):
- init.kaiming_normal_(m.weight, a=0, mode='fan_in')
- m.weight.data *= scale # for residual block
- if m.bias is not None:
- m.bias.data.zero_()
- elif isinstance(m, nn.Linear):
- init.kaiming_normal_(m.weight, a=0, mode='fan_in')
- m.weight.data *= scale
- if m.bias is not None:
- m.bias.data.zero_()
- elif isinstance(m, nn.BatchNorm2d):
- init.constant_(m.weight, 1)
- init.constant_(m.bias.data, 0.0)
-
-
-def make_layer(block, n_layers):
- layers = []
- for _ in range(n_layers):
- layers.append(block())
- return nn.Sequential(*layers)
-
-
-class ResidualDenseBlock_5C(nn.Module):
- def __init__(self, nf=64, gc=32, bias=True):
- super(ResidualDenseBlock_5C, self).__init__()
- # gc: growth channel, i.e. intermediate channels
- self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
- self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
- self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
- self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
- self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
-
- # initialization
- initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
-
- def forward(self, x):
- x1 = self.lrelu(self.conv1(x))
- x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
- x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
- x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
- x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
- return x5 * 0.2 + x
-
-
-class RRDB(nn.Module):
- '''Residual in Residual Dense Block'''
-
- def __init__(self, nf, gc=32):
- super(RRDB, self).__init__()
- self.RDB1 = ResidualDenseBlock_5C(nf, gc)
- self.RDB2 = ResidualDenseBlock_5C(nf, gc)
- self.RDB3 = ResidualDenseBlock_5C(nf, gc)
-
- def forward(self, x):
- out = self.RDB1(x)
- out = self.RDB2(out)
- out = self.RDB3(out)
- return out * 0.2 + x
-
-
-class RRDBNet(nn.Module):
- def __init__(self, in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4):
- super(RRDBNet, self).__init__()
- RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
- self.sf = sf
-
- self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
- self.RRDB_trunk = make_layer(RRDB_block_f, nb)
- self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- #### upsampling
- self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- if self.sf==4:
- self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
-
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
-
- def forward(self, x):
- fea = self.conv_first(x)
- trunk = self.trunk_conv(self.RRDB_trunk(fea))
- fea = fea + trunk
-
- fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
- if self.sf==4:
- fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
- out = self.conv_last(self.lrelu(self.HRconv(fea)))
-
- return out \ No newline at end of file
diff --git a/modules/deepbooru.py b/modules/deepbooru.py
index 8914662d..8bbc90a4 100644
--- a/modules/deepbooru.py
+++ b/modules/deepbooru.py
@@ -50,11 +50,12 @@ def create_deepbooru_process(threshold, deepbooru_opts):
the tags.
"""
from modules import shared # prevents circular reference
- shared.deepbooru_process_manager = multiprocessing.Manager()
+ context = multiprocessing.get_context("spawn")
+ shared.deepbooru_process_manager = context.Manager()
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
shared.deepbooru_process_return["value"] = -1
- shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
+ shared.deepbooru_process = context.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
shared.deepbooru_process.start()
diff --git a/modules/devices.py b/modules/devices.py
index eb422583..7511e1dc 100644
--- a/modules/devices.py
+++ b/modules/devices.py
@@ -1,7 +1,6 @@
+import sys, os, shlex
import contextlib
-
import torch
-
from modules import errors
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
@@ -9,10 +8,22 @@ has_mps = getattr(torch, 'has_mps', False)
cpu = torch.device("cpu")
+def extract_device_id(args, name):
+ for x in range(len(args)):
+ if name in args[x]: return args[x+1]
+ return None
def get_optimal_device():
if torch.cuda.is_available():
- return torch.device("cuda")
+ from modules import shared
+
+ device_id = shared.cmd_opts.device_id
+
+ if device_id is not None:
+ cuda_device = f"cuda:{device_id}"
+ return torch.device(cuda_device)
+ else:
+ return torch.device("cuda")
if has_mps:
return torch.device("mps")
@@ -34,7 +45,7 @@ def enable_tf32():
errors.run(enable_tf32, "Enabling TF32")
-device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = get_optimal_device()
+device = device_interrogate = device_gfpgan = device_swinir = device_esrgan = device_scunet = device_codeformer = None
dtype = torch.float16
dtype_vae = torch.float16
@@ -70,3 +81,7 @@ def autocast(disable=False):
return contextlib.nullcontext()
return torch.autocast("cuda")
+
+# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
+def mps_contiguous(input_tensor, device): return input_tensor.contiguous() if device.type == 'mps' else input_tensor
+def mps_contiguous_to(input_tensor, device): return mps_contiguous(input_tensor, device).to(device)
diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py
index 46ad0da3..a13cf6ac 100644
--- a/modules/esrgan_model.py
+++ b/modules/esrgan_model.py
@@ -11,62 +11,109 @@ from modules.upscaler import Upscaler, UpscalerData
from modules.shared import opts
-def fix_model_layers(crt_model, pretrained_net):
- # this code is adapted from https://github.com/xinntao/ESRGAN
- if 'conv_first.weight' in pretrained_net:
- return pretrained_net
-
- if 'model.0.weight' not in pretrained_net:
- is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"]
- if is_realesrgan:
- raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.")
- else:
- raise Exception("The file is not a ESRGAN model.")
- crt_net = crt_model.state_dict()
- load_net_clean = {}
- for k, v in pretrained_net.items():
- if k.startswith('module.'):
- load_net_clean[k[7:]] = v
- else:
- load_net_clean[k] = v
- pretrained_net = load_net_clean
-
- tbd = []
- for k, v in crt_net.items():
- tbd.append(k)
-
- # directly copy
- for k, v in crt_net.items():
- if k in pretrained_net and pretrained_net[k].size() == v.size():
- crt_net[k] = pretrained_net[k]
- tbd.remove(k)
-
- crt_net['conv_first.weight'] = pretrained_net['model.0.weight']
- crt_net['conv_first.bias'] = pretrained_net['model.0.bias']
-
- for k in tbd.copy():
- if 'RDB' in k:
- ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
- if '.weight' in k:
- ori_k = ori_k.replace('.weight', '.0.weight')
- elif '.bias' in k:
- ori_k = ori_k.replace('.bias', '.0.bias')
- crt_net[k] = pretrained_net[ori_k]
- tbd.remove(k)
-
- crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight']
- crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias']
- crt_net['upconv1.weight'] = pretrained_net['model.3.weight']
- crt_net['upconv1.bias'] = pretrained_net['model.3.bias']
- crt_net['upconv2.weight'] = pretrained_net['model.6.weight']
- crt_net['upconv2.bias'] = pretrained_net['model.6.bias']
- crt_net['HRconv.weight'] = pretrained_net['model.8.weight']
- crt_net['HRconv.bias'] = pretrained_net['model.8.bias']
- crt_net['conv_last.weight'] = pretrained_net['model.10.weight']
- crt_net['conv_last.bias'] = pretrained_net['model.10.bias']
-
- return crt_net
+def mod2normal(state_dict):
+ # this code is copied from https://github.com/victorca25/iNNfer
+ if 'conv_first.weight' in state_dict:
+ crt_net = {}
+ items = []
+ for k, v in state_dict.items():
+ items.append(k)
+
+ crt_net['model.0.weight'] = state_dict['conv_first.weight']
+ crt_net['model.0.bias'] = state_dict['conv_first.bias']
+
+ for k in items.copy():
+ if 'RDB' in k:
+ ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
+ if '.weight' in k:
+ ori_k = ori_k.replace('.weight', '.0.weight')
+ elif '.bias' in k:
+ ori_k = ori_k.replace('.bias', '.0.bias')
+ crt_net[ori_k] = state_dict[k]
+ items.remove(k)
+
+ crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight']
+ crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias']
+ crt_net['model.3.weight'] = state_dict['upconv1.weight']
+ crt_net['model.3.bias'] = state_dict['upconv1.bias']
+ crt_net['model.6.weight'] = state_dict['upconv2.weight']
+ crt_net['model.6.bias'] = state_dict['upconv2.bias']
+ crt_net['model.8.weight'] = state_dict['HRconv.weight']
+ crt_net['model.8.bias'] = state_dict['HRconv.bias']
+ crt_net['model.10.weight'] = state_dict['conv_last.weight']
+ crt_net['model.10.bias'] = state_dict['conv_last.bias']
+ state_dict = crt_net
+ return state_dict
+
+
+def resrgan2normal(state_dict, nb=23):
+ # this code is copied from https://github.com/victorca25/iNNfer
+ if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
+ crt_net = {}
+ items = []
+ for k, v in state_dict.items():
+ items.append(k)
+
+ crt_net['model.0.weight'] = state_dict['conv_first.weight']
+ crt_net['model.0.bias'] = state_dict['conv_first.bias']
+
+ for k in items.copy():
+ if "rdb" in k:
+ ori_k = k.replace('body.', 'model.1.sub.')
+ ori_k = ori_k.replace('.rdb', '.RDB')
+ if '.weight' in k:
+ ori_k = ori_k.replace('.weight', '.0.weight')
+ elif '.bias' in k:
+ ori_k = ori_k.replace('.bias', '.0.bias')
+ crt_net[ori_k] = state_dict[k]
+ items.remove(k)
+
+ crt_net[f'model.1.sub.{nb}.weight'] = state_dict['conv_body.weight']
+ crt_net[f'model.1.sub.{nb}.bias'] = state_dict['conv_body.bias']
+ crt_net['model.3.weight'] = state_dict['conv_up1.weight']
+ crt_net['model.3.bias'] = state_dict['conv_up1.bias']
+ crt_net['model.6.weight'] = state_dict['conv_up2.weight']
+ crt_net['model.6.bias'] = state_dict['conv_up2.bias']
+ crt_net['model.8.weight'] = state_dict['conv_hr.weight']
+ crt_net['model.8.bias'] = state_dict['conv_hr.bias']
+ crt_net['model.10.weight'] = state_dict['conv_last.weight']
+ crt_net['model.10.bias'] = state_dict['conv_last.bias']
+ state_dict = crt_net
+ return state_dict
+
+
+def infer_params(state_dict):
+ # this code is copied from https://github.com/victorca25/iNNfer
+ scale2x = 0
+ scalemin = 6
+ n_uplayer = 0
+ plus = False
+
+ for block in list(state_dict):
+ parts = block.split(".")
+ n_parts = len(parts)
+ if n_parts == 5 and parts[2] == "sub":
+ nb = int(parts[3])
+ elif n_parts == 3:
+ part_num = int(parts[1])
+ if (part_num > scalemin
+ and parts[0] == "model"
+ and parts[2] == "weight"):
+ scale2x += 1
+ if part_num > n_uplayer:
+ n_uplayer = part_num
+ out_nc = state_dict[block].shape[0]
+ if not plus and "conv1x1" in block:
+ plus = True
+
+ nf = state_dict["model.0.weight"].shape[0]
+ in_nc = state_dict["model.0.weight"].shape[1]
+ out_nc = out_nc
+ scale = 2 ** scale2x
+
+ return in_nc, out_nc, nf, nb, plus, scale
+
class UpscalerESRGAN(Upscaler):
def __init__(self, dirname):
@@ -109,22 +156,41 @@ class UpscalerESRGAN(Upscaler):
print("Unable to load %s from %s" % (self.model_path, filename))
return None
- pretrained_net = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
- crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
+ state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
+
+ if "params_ema" in state_dict:
+ state_dict = state_dict["params_ema"]
+ elif "params" in state_dict:
+ state_dict = state_dict["params"]
+ num_conv = 16 if "realesr-animevideov3" in filename else 32
+ model = arch.SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=4, act_type='prelu')
+ model.load_state_dict(state_dict)
+ model.eval()
+ return model
+
+ if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
+ nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
+ state_dict = resrgan2normal(state_dict, nb)
+ elif "conv_first.weight" in state_dict:
+ state_dict = mod2normal(state_dict)
+ elif "model.0.weight" not in state_dict:
+ raise Exception("The file is not a recognized ESRGAN model.")
+
+ in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)
- pretrained_net = fix_model_layers(crt_model, pretrained_net)
- crt_model.load_state_dict(pretrained_net)
- crt_model.eval()
+ model = arch.RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
+ model.load_state_dict(state_dict)
+ model.eval()
- return crt_model
+ return model
def upscale_without_tiling(model, img):
img = np.array(img)
img = img[:, :, ::-1]
- img = np.moveaxis(img, 2, 0) / 255
+ img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
img = torch.from_numpy(img).float()
- img = img.unsqueeze(0).to(devices.device_esrgan)
+ img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_esrgan)
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py
index e413d36e..bc9ceb2a 100644
--- a/modules/esrgan_model_arch.py
+++ b/modules/esrgan_model_arch.py
@@ -1,80 +1,463 @@
-# this file is taken from https://github.com/xinntao/ESRGAN
+# this file is adapted from https://github.com/victorca25/iNNfer
+import math
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
-def make_layer(block, n_layers):
- layers = []
- for _ in range(n_layers):
- layers.append(block())
- return nn.Sequential(*layers)
+####################
+# RRDBNet Generator
+####################
+class RRDBNet(nn.Module):
+ def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None,
+ act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D',
+ finalact=None, gaussian_noise=False, plus=False):
+ super(RRDBNet, self).__init__()
+ n_upscale = int(math.log(upscale, 2))
+ if upscale == 3:
+ n_upscale = 1
-class ResidualDenseBlock_5C(nn.Module):
- def __init__(self, nf=64, gc=32, bias=True):
- super(ResidualDenseBlock_5C, self).__init__()
- # gc: growth channel, i.e. intermediate channels
- self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
- self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
- self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
- self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
- self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
+ self.resrgan_scale = 0
+ if in_nc % 16 == 0:
+ self.resrgan_scale = 1
+ elif in_nc != 4 and in_nc % 4 == 0:
+ self.resrgan_scale = 2
- # initialization
- # mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
+ fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
+ rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
+ norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype,
+ gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)]
+ LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype)
- def forward(self, x):
- x1 = self.lrelu(self.conv1(x))
- x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
- x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
- x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
- x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
- return x5 * 0.2 + x
+ if upsample_mode == 'upconv':
+ upsample_block = upconv_block
+ elif upsample_mode == 'pixelshuffle':
+ upsample_block = pixelshuffle_block
+ else:
+ raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode))
+ if upscale == 3:
+ upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
+ else:
+ upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)]
+ HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype)
+ HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
+
+ outact = act(finalact) if finalact else None
+
+ self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)),
+ *upsampler, HR_conv0, HR_conv1, outact)
+
+ def forward(self, x, outm=None):
+ if self.resrgan_scale == 1:
+ feat = pixel_unshuffle(x, scale=4)
+ elif self.resrgan_scale == 2:
+ feat = pixel_unshuffle(x, scale=2)
+ else:
+ feat = x
+
+ return self.model(feat)
class RRDB(nn.Module):
- '''Residual in Residual Dense Block'''
+ """
+ Residual in Residual Dense Block
+ (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
+ """
- def __init__(self, nf, gc=32):
+ def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
+ norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
+ spectral_norm=False, gaussian_noise=False, plus=False):
super(RRDB, self).__init__()
- self.RDB1 = ResidualDenseBlock_5C(nf, gc)
- self.RDB2 = ResidualDenseBlock_5C(nf, gc)
- self.RDB3 = ResidualDenseBlock_5C(nf, gc)
+ # This is for backwards compatibility with existing models
+ if nr == 3:
+ self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
+ norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
+ gaussian_noise=gaussian_noise, plus=plus)
+ self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
+ norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
+ gaussian_noise=gaussian_noise, plus=plus)
+ self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
+ norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
+ gaussian_noise=gaussian_noise, plus=plus)
+ else:
+ RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
+ norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
+ gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)]
+ self.RDBs = nn.Sequential(*RDB_list)
def forward(self, x):
- out = self.RDB1(x)
- out = self.RDB2(out)
- out = self.RDB3(out)
+ if hasattr(self, 'RDB1'):
+ out = self.RDB1(x)
+ out = self.RDB2(out)
+ out = self.RDB3(out)
+ else:
+ out = self.RDBs(x)
return out * 0.2 + x
-class RRDBNet(nn.Module):
- def __init__(self, in_nc, out_nc, nf, nb, gc=32):
- super(RRDBNet, self).__init__()
- RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
+class ResidualDenseBlock_5C(nn.Module):
+ """
+ Residual Dense Block
+ The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
+ Modified options that can be used:
+ - "Partial Convolution based Padding" arXiv:1811.11718
+ - "Spectral normalization" arXiv:1802.05957
+ - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
+ {Rakotonirina} and A. {Rasoanaivo}
+ """
+
+ def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
+ norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
+ spectral_norm=False, gaussian_noise=False, plus=False):
+ super(ResidualDenseBlock_5C, self).__init__()
- self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
- self.RRDB_trunk = make_layer(RRDB_block_f, nb)
- self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- #### upsampling
- self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
- self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
+ self.noise = GaussianNoise() if gaussian_noise else None
+ self.conv1x1 = conv1x1(nf, gc) if plus else None
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
+ self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
+ norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
+ spectral_norm=spectral_norm)
+ self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
+ norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
+ spectral_norm=spectral_norm)
+ self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
+ norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
+ spectral_norm=spectral_norm)
+ self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
+ norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
+ spectral_norm=spectral_norm)
+ if mode == 'CNA':
+ last_act = None
+ else:
+ last_act = act_type
+ self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type,
+ norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype,
+ spectral_norm=spectral_norm)
def forward(self, x):
- fea = self.conv_first(x)
- trunk = self.trunk_conv(self.RRDB_trunk(fea))
- fea = fea + trunk
+ x1 = self.conv1(x)
+ x2 = self.conv2(torch.cat((x, x1), 1))
+ if self.conv1x1:
+ x2 = x2 + self.conv1x1(x)
+ x3 = self.conv3(torch.cat((x, x1, x2), 1))
+ x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
+ if self.conv1x1:
+ x4 = x4 + x2
+ x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
+ if self.noise:
+ return self.noise(x5.mul(0.2) + x)
+ else:
+ return x5 * 0.2 + x
+
- fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
- fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
- out = self.conv_last(self.lrelu(self.HRconv(fea)))
+####################
+# ESRGANplus
+####################
+class GaussianNoise(nn.Module):
+ def __init__(self, sigma=0.1, is_relative_detach=False):
+ super().__init__()
+ self.sigma = sigma
+ self.is_relative_detach = is_relative_detach
+ self.noise = torch.tensor(0, dtype=torch.float)
+
+ def forward(self, x):
+ if self.training and self.sigma != 0:
+ self.noise = self.noise.to(x.device)
+ scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
+ sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
+ x = x + sampled_noise
+ return x
+
+def conv1x1(in_planes, out_planes, stride=1):
+ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
+
+
+####################
+# SRVGGNetCompact
+####################
+
+class SRVGGNetCompact(nn.Module):
+ """A compact VGG-style network structure for super-resolution.
+ This class is copied from https://github.com/xinntao/Real-ESRGAN
+ """
+
+ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
+ super(SRVGGNetCompact, self).__init__()
+ self.num_in_ch = num_in_ch
+ self.num_out_ch = num_out_ch
+ self.num_feat = num_feat
+ self.num_conv = num_conv
+ self.upscale = upscale
+ self.act_type = act_type
+
+ self.body = nn.ModuleList()
+ # the first conv
+ self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
+ # the first activation
+ if act_type == 'relu':
+ activation = nn.ReLU(inplace=True)
+ elif act_type == 'prelu':
+ activation = nn.PReLU(num_parameters=num_feat)
+ elif act_type == 'leakyrelu':
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
+ self.body.append(activation)
+
+ # the body structure
+ for _ in range(num_conv):
+ self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
+ # activation
+ if act_type == 'relu':
+ activation = nn.ReLU(inplace=True)
+ elif act_type == 'prelu':
+ activation = nn.PReLU(num_parameters=num_feat)
+ elif act_type == 'leakyrelu':
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
+ self.body.append(activation)
+
+ # the last conv
+ self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
+ # upsample
+ self.upsampler = nn.PixelShuffle(upscale)
+
+ def forward(self, x):
+ out = x
+ for i in range(0, len(self.body)):
+ out = self.body[i](out)
+
+ out = self.upsampler(out)
+ # add the nearest upsampled image, so that the network learns the residual
+ base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
+ out += base
return out
+
+
+####################
+# Upsampler
+####################
+
+class Upsample(nn.Module):
+ r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
+ The input data is assumed to be of the form
+ `minibatch x channels x [optional depth] x [optional height] x width`.
+ """
+
+ def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
+ super(Upsample, self).__init__()
+ if isinstance(scale_factor, tuple):
+ self.scale_factor = tuple(float(factor) for factor in scale_factor)
+ else:
+ self.scale_factor = float(scale_factor) if scale_factor else None
+ self.mode = mode
+ self.size = size
+ self.align_corners = align_corners
+
+ def forward(self, x):
+ return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners)
+
+ def extra_repr(self):
+ if self.scale_factor is not None:
+ info = 'scale_factor=' + str(self.scale_factor)
+ else:
+ info = 'size=' + str(self.size)
+ info += ', mode=' + self.mode
+ return info
+
+
+def pixel_unshuffle(x, scale):
+ """ Pixel unshuffle.
+ Args:
+ x (Tensor): Input feature with shape (b, c, hh, hw).
+ scale (int): Downsample ratio.
+ Returns:
+ Tensor: the pixel unshuffled feature.
+ """
+ b, c, hh, hw = x.size()
+ out_channel = c * (scale**2)
+ assert hh % scale == 0 and hw % scale == 0
+ h = hh // scale
+ w = hw // scale
+ x_view = x.view(b, c, h, scale, w, scale)
+ return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
+
+
+def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
+ pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'):
+ """
+ Pixel shuffle layer
+ (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
+ Neural Network, CVPR17)
+ """
+ conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias,
+ pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype)
+ pixel_shuffle = nn.PixelShuffle(upscale_factor)
+
+ n = norm(norm_type, out_nc) if norm_type else None
+ a = act(act_type) if act_type else None
+ return sequential(conv, pixel_shuffle, n, a)
+
+
+def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
+ pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'):
+ """ Upconv layer """
+ upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor
+ upsample = Upsample(scale_factor=upscale_factor, mode=mode)
+ conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias,
+ pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype)
+ return sequential(upsample, conv)
+
+
+
+
+
+
+
+
+####################
+# Basic blocks
+####################
+
+
+def make_layer(basic_block, num_basic_block, **kwarg):
+ """Make layers by stacking the same blocks.
+ Args:
+ basic_block (nn.module): nn.module class for basic block. (block)
+ num_basic_block (int): number of blocks. (n_layers)
+ Returns:
+ nn.Sequential: Stacked blocks in nn.Sequential.
+ """
+ layers = []
+ for _ in range(num_basic_block):
+ layers.append(basic_block(**kwarg))
+ return nn.Sequential(*layers)
+
+
+def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
+ """ activation helper """
+ act_type = act_type.lower()
+ if act_type == 'relu':
+ layer = nn.ReLU(inplace)
+ elif act_type in ('leakyrelu', 'lrelu'):
+ layer = nn.LeakyReLU(neg_slope, inplace)
+ elif act_type == 'prelu':
+ layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
+ elif act_type == 'tanh': # [-1, 1] range output
+ layer = nn.Tanh()
+ elif act_type == 'sigmoid': # [0, 1] range output
+ layer = nn.Sigmoid()
+ else:
+ raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type))
+ return layer
+
+
+class Identity(nn.Module):
+ def __init__(self, *kwargs):
+ super(Identity, self).__init__()
+
+ def forward(self, x, *kwargs):
+ return x
+
+
+def norm(norm_type, nc):
+ """ Return a normalization layer """
+ norm_type = norm_type.lower()
+ if norm_type == 'batch':
+ layer = nn.BatchNorm2d(nc, affine=True)
+ elif norm_type == 'instance':
+ layer = nn.InstanceNorm2d(nc, affine=False)
+ elif norm_type == 'none':
+ def norm_layer(x): return Identity()
+ else:
+ raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type))
+ return layer
+
+
+def pad(pad_type, padding):
+ """ padding layer helper """
+ pad_type = pad_type.lower()
+ if padding == 0:
+ return None
+ if pad_type == 'reflect':
+ layer = nn.ReflectionPad2d(padding)
+ elif pad_type == 'replicate':
+ layer = nn.ReplicationPad2d(padding)
+ elif pad_type == 'zero':
+ layer = nn.ZeroPad2d(padding)
+ else:
+ raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type))
+ return layer
+
+
+def get_valid_padding(kernel_size, dilation):
+ kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
+ padding = (kernel_size - 1) // 2
+ return padding
+
+
+class ShortcutBlock(nn.Module):
+ """ Elementwise sum the output of a submodule to its input """
+ def __init__(self, submodule):
+ super(ShortcutBlock, self).__init__()
+ self.sub = submodule
+
+ def forward(self, x):
+ output = x + self.sub(x)
+ return output
+
+ def __repr__(self):
+ return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|')
+
+
+def sequential(*args):
+ """ Flatten Sequential. It unwraps nn.Sequential. """
+ if len(args) == 1:
+ if isinstance(args[0], OrderedDict):
+ raise NotImplementedError('sequential does not support OrderedDict input.')
+ return args[0] # No sequential is needed.
+ modules = []
+ for module in args:
+ if isinstance(module, nn.Sequential):
+ for submodule in module.children():
+ modules.append(submodule)
+ elif isinstance(module, nn.Module):
+ modules.append(module)
+ return nn.Sequential(*modules)
+
+
+def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True,
+ pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D',
+ spectral_norm=False):
+ """ Conv layer with padding, normalization, activation """
+ assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode)
+ padding = get_valid_padding(kernel_size, dilation)
+ p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
+ padding = padding if pad_type == 'zero' else 0
+
+ if convtype=='PartialConv2D':
+ c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
+ dilation=dilation, bias=bias, groups=groups)
+ elif convtype=='DeformConv2D':
+ c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
+ dilation=dilation, bias=bias, groups=groups)
+ elif convtype=='Conv3D':
+ c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
+ dilation=dilation, bias=bias, groups=groups)
+ else:
+ c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
+ dilation=dilation, bias=bias, groups=groups)
+
+ if spectral_norm:
+ c = nn.utils.spectral_norm(c)
+
+ a = act(act_type) if act_type else None
+ if 'CNA' in mode:
+ n = norm(norm_type, out_nc) if norm_type else None
+ return sequential(p, c, n, a)
+ elif mode == 'NAC':
+ if norm_type is None and act_type is not None:
+ a = act(act_type, inplace=False)
+ n = norm(norm_type, in_nc) if norm_type else None
+ return sequential(n, a, p, c)
diff --git a/modules/extensions.py b/modules/extensions.py
new file mode 100644
index 00000000..897af96e
--- /dev/null
+++ b/modules/extensions.py
@@ -0,0 +1,83 @@
+import os
+import sys
+import traceback
+
+import git
+
+from modules import paths, shared
+
+
+extensions = []
+extensions_dir = os.path.join(paths.script_path, "extensions")
+
+
+def active():
+ return [x for x in extensions if x.enabled]
+
+
+class Extension:
+ def __init__(self, name, path, enabled=True):
+ self.name = name
+ self.path = path
+ self.enabled = enabled
+ self.status = ''
+ self.can_update = False
+
+ repo = None
+ try:
+ if os.path.exists(os.path.join(path, ".git")):
+ repo = git.Repo(path)
+ except Exception:
+ print(f"Error reading github repository info from {path}:", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ if repo is None or repo.bare:
+ self.remote = None
+ else:
+ self.remote = next(repo.remote().urls, None)
+ self.status = 'unknown'
+
+ def list_files(self, subdir, extension):
+ from modules import scripts
+
+ dirpath = os.path.join(self.path, subdir)
+ if not os.path.isdir(dirpath):
+ return []
+
+ res = []
+ for filename in sorted(os.listdir(dirpath)):
+ res.append(scripts.ScriptFile(self.path, filename, os.path.join(dirpath, filename)))
+
+ res = [x for x in res if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
+
+ return res
+
+ def check_updates(self):
+ repo = git.Repo(self.path)
+ for fetch in repo.remote().fetch("--dry-run"):
+ if fetch.flags != fetch.HEAD_UPTODATE:
+ self.can_update = True
+ self.status = "behind"
+ return
+
+ self.can_update = False
+ self.status = "latest"
+
+ def pull(self):
+ repo = git.Repo(self.path)
+ repo.remotes.origin.pull()
+
+
+def list_extensions():
+ extensions.clear()
+
+ if not os.path.isdir(extensions_dir):
+ return
+
+ for dirname in sorted(os.listdir(extensions_dir)):
+ path = os.path.join(extensions_dir, dirname)
+ if not os.path.isdir(path):
+ continue
+
+ extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions)
+ extensions.append(extension)
diff --git a/modules/extras.py b/modules/extras.py
index 22c5a1c1..4d51088b 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -1,3 +1,4 @@
+from __future__ import annotations
import math
import os
@@ -7,6 +8,10 @@ from PIL import Image
import torch
import tqdm
+from typing import Callable, List, OrderedDict, Tuple
+from functools import partial
+from dataclasses import dataclass
+
from modules import processing, shared, images, devices, sd_models
from modules.shared import opts
import modules.gfpgan_model
@@ -17,10 +22,38 @@ import piexif.helper
import gradio as gr
-cached_images = {}
+class LruCache(OrderedDict):
+ @dataclass(frozen=True)
+ class Key:
+ image_hash: int
+ info_hash: int
+ args_hash: int
+
+ @dataclass
+ class Value:
+ image: Image.Image
+ info: str
+
+ def __init__(self, max_size: int = 5, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self._max_size = max_size
+
+ def get(self, key: LruCache.Key) -> LruCache.Value:
+ ret = super().get(key)
+ if ret is not None:
+ self.move_to_end(key) # Move to end of eviction list
+ return ret
+
+ def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
+ self[key] = value
+ while len(self) > self._max_size:
+ self.popitem(last=False)
+
+cached_images: LruCache = LruCache(max_size=5)
-def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
+
+def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool):
devices.torch_gc()
imageArr = []
@@ -39,7 +72,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
if input_dir == '':
return outputs, "Please select an input directory.", ''
- image_list = [file for file in [os.path.join(input_dir, x) for x in sorted(os.listdir(input_dir))] if os.path.isfile(file)]
+ image_list = shared.listfiles(input_dir)
for img in image_list:
try:
image = Image.open(img)
@@ -56,72 +89,102 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
else:
outpath = opts.outdir_samples or opts.outdir_extras_samples
-
- for image, image_name in zip(imageArr, imageNameArr):
- if image is None:
- return outputs, "Please select an input image.", ''
- existing_pnginfo = image.info or {}
+ # Extra operation definitions
- image = image.convert("RGB")
- info = ""
+ def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
+ res = Image.fromarray(restored_img)
- if gfpgan_visibility > 0:
- restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
- res = Image.fromarray(restored_img)
+ if gfpgan_visibility < 1.0:
+ res = Image.blend(image, res, gfpgan_visibility)
- if gfpgan_visibility < 1.0:
- res = Image.blend(image, res, gfpgan_visibility)
+ info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
+ return (res, info)
- info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
- image = res
+ def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
+ res = Image.fromarray(restored_img)
- if codeformer_visibility > 0:
- restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
- res = Image.fromarray(restored_img)
+ if codeformer_visibility < 1.0:
+ res = Image.blend(image, res, codeformer_visibility)
- if codeformer_visibility < 1.0:
- res = Image.blend(image, res, codeformer_visibility)
+ info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
+ return (res, info)
- info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
- image = res
+ def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
+ upscaler = shared.sd_upscalers[scaler_index]
+ res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
+ if mode == 1 and crop:
+ cropped = Image.new("RGB", (resize_w, resize_h))
+ cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
+ res = cropped
+ return res
+ def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ # Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
+ nonlocal upscaling_resize
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
+ return (image, info)
+
+ @dataclass
+ class UpscaleParams:
+ upscaler_idx: int
+ blend_alpha: float
+
+ def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ blended_result: Image.Image = None
+ for upscaler in params:
+ upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
+ upscaling_resize_w, upscaling_resize_h, upscaling_crop)
+ cache_key = LruCache.Key(image_hash=hash(np.array(image.getdata()).tobytes()),
+ info_hash=hash(info),
+ args_hash=hash(upscale_args))
+ cached_entry = cached_images.get(cache_key)
+ if cached_entry is None:
+ res = upscale(image, *upscale_args)
+ info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
+ cached_images.put(cache_key, LruCache.Value(image=res, info=info))
+ else:
+ res, info = cached_entry.image, cached_entry.info
+
+ if blended_result is None:
+ blended_result = res
+ else:
+ blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
+ return (blended_result, info)
+
+ # Build a list of operations to run
+ facefix_ops: List[Callable] = []
+ facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
+ facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
+
+ upscale_ops: List[Callable] = []
+ upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
+
+ if upscaling_resize != 0:
+ step_params: List[UpscaleParams] = []
+ step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
+ if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
+ step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
+
+ upscale_ops.append(partial(run_upscalers_blend, step_params))
+
+ extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
+
+ for image, image_name in zip(imageArr, imageNameArr):
+ if image is None:
+ return outputs, "Please select an input image.", ''
+ existing_pnginfo = image.info or {}
+
+ image = image.convert("RGB")
+ info = ""
+ # Run each operation on each image
+ for op in extras_ops:
+ image, info = op(image, info)
- if upscaling_resize != 1.0:
- def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
- small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
- pixels = tuple(np.array(small).flatten().tolist())
- key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight,
- resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels
-
- c = cached_images.get(key)
- if c is None:
- upscaler = shared.sd_upscalers[scaler_index]
- c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
- if mode == 1 and crop:
- cropped = Image.new("RGB", (resize_w, resize_h))
- cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
- c = cropped
- cached_images[key] = c
-
- return c
-
- info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
- res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
-
- if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
- res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
- info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
- res = Image.blend(res, res2, extras_upscaler_2_visibility)
-
- image = res
-
- while len(cached_images) > 2:
- del cached_images[next(iter(cached_images.keys()))]
-
if opts.use_original_name_batch and image_name != None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
@@ -141,6 +204,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
return outputs, plaintext_to_html(info), ''
+def clear_cache():
+ cached_images.clear()
+
def run_pnginfo(image):
if image is None:
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index f73647da..985ec95e 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -1,14 +1,25 @@
+import base64
+import io
import os
import re
import gradio as gr
from modules.shared import script_path
from modules import shared
+import tempfile
+from PIL import Image
re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code)
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
type_of_gr_update = type(gr.update())
+paste_fields = {}
+bind_list = []
+
+
+def reset():
+ paste_fields.clear()
+ bind_list.clear()
def quote(text):
@@ -20,6 +31,111 @@ def quote(text):
text = text.replace('"', '\\"')
return f'"{text}"'
+
+def image_from_url_text(filedata):
+ if type(filedata) == dict and filedata["is_file"]:
+ filename = filedata["name"]
+ tempdir = os.path.normpath(tempfile.gettempdir())
+ normfn = os.path.normpath(filename)
+ assert normfn.startswith(tempdir), 'trying to open image file not in temporary directory'
+
+ return Image.open(filename)
+
+ if type(filedata) == list:
+ if len(filedata) == 0:
+ return None
+
+ filedata = filedata[0]
+
+ if filedata.startswith("data:image/png;base64,"):
+ filedata = filedata[len("data:image/png;base64,"):]
+
+ filedata = base64.decodebytes(filedata.encode('utf-8'))
+ image = Image.open(io.BytesIO(filedata))
+ return image
+
+
+def add_paste_fields(tabname, init_img, fields):
+ paste_fields[tabname] = {"init_img": init_img, "fields": fields}
+
+ # backwards compatibility for existing extensions
+ import modules.ui
+ if tabname == 'txt2img':
+ modules.ui.txt2img_paste_fields = fields
+ elif tabname == 'img2img':
+ modules.ui.img2img_paste_fields = fields
+
+
+def integrate_settings_paste_fields(component_dict):
+ from modules import ui
+
+ settings_map = {
+ 'sd_hypernetwork': 'Hypernet',
+ 'sd_hypernetwork_strength': 'Hypernet strength',
+ 'CLIP_stop_at_last_layers': 'Clip skip',
+ 'sd_model_checkpoint': 'Model hash',
+ }
+ settings_paste_fields = [
+ (component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None)))
+ for k, v in settings_map.items()
+ ]
+
+ for tabname, info in paste_fields.items():
+ if info["fields"] is not None:
+ info["fields"] += settings_paste_fields
+
+
+def create_buttons(tabs_list):
+ buttons = {}
+ for tab in tabs_list:
+ buttons[tab] = gr.Button(f"Send to {tab}")
+ return buttons
+
+
+#if send_generate_info is a tab name, mean generate_info comes from the params fields of the tab
+def bind_buttons(buttons, send_image, send_generate_info):
+ bind_list.append([buttons, send_image, send_generate_info])
+
+
+def run_bind():
+ for buttons, send_image, send_generate_info in bind_list:
+ for tab in buttons:
+ button = buttons[tab]
+ if send_image and paste_fields[tab]["init_img"]:
+ if type(send_image) == gr.Gallery:
+ button.click(
+ fn=lambda x: image_from_url_text(x),
+ _js="extract_image_from_gallery",
+ inputs=[send_image],
+ outputs=[paste_fields[tab]["init_img"]],
+ )
+ else:
+ button.click(
+ fn=lambda x: x,
+ inputs=[send_image],
+ outputs=[paste_fields[tab]["init_img"]],
+ )
+
+ if send_generate_info and paste_fields[tab]["fields"] is not None:
+ if send_generate_info in paste_fields:
+ paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration', 'Size-1', 'Size-2'] + (["Seed"] if shared.opts.send_seed else [])
+
+ button.click(
+ fn=lambda *x: x,
+ inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names],
+ outputs=[field for field, name in paste_fields[tab]["fields"] if name in paste_field_names],
+ )
+ else:
+ connect_paste(button, paste_fields[tab]["fields"], send_generate_info)
+
+ button.click(
+ fn=None,
+ _js=f"switch_to_{tab}",
+ inputs=None,
+ outputs=None,
+ )
+
+
def parse_generation_parameters(x: str):
"""parses generation parameters string, the one you see in text field under the picture in UI:
```
@@ -68,7 +184,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
return res
-def connect_paste(button, paste_fields, input_comp, js=None):
+def connect_paste(button, paste_fields, input_comp, jsfunc=None):
def paste_func(prompt):
if not prompt and not shared.cmd_opts.hide_ui_dir_config:
filename = os.path.join(script_path, "params.txt")
@@ -106,7 +222,9 @@ def connect_paste(button, paste_fields, input_comp, js=None):
button.click(
fn=paste_func,
- _js=js,
+ _js=jsfunc,
inputs=[input_comp],
outputs=[x[0] for x in paste_fields],
)
+
+
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 47d91ea5..a11e01d6 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -1,28 +1,41 @@
+import csv
import datetime
import glob
import html
import os
import sys
import traceback
-import tqdm
-import csv
-
-import torch
+import inspect
-from ldm.util import default
-from modules import devices, shared, processing, sd_models
+import modules.textual_inversion.dataset
import torch
-from torch import einsum
+import tqdm
from einops import rearrange, repeat
-import modules.textual_inversion.dataset
+from ldm.util import default
+from modules import devices, processing, sd_models, shared
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
+from torch import einsum
+from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
+
+from collections import defaultdict, deque
+from statistics import stdev, mean
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
-
- def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
+ activation_dict = {
+ "linear": torch.nn.Identity,
+ "relu": torch.nn.ReLU,
+ "leakyrelu": torch.nn.LeakyReLU,
+ "elu": torch.nn.ELU,
+ "swish": torch.nn.Hardswish,
+ "tanh": torch.nn.Tanh,
+ "sigmoid": torch.nn.Sigmoid,
+ }
+ activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
+
+ def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', add_layer_norm=False, use_dropout=False):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
@@ -31,20 +44,26 @@ class HypernetworkModule(torch.nn.Module):
linears = []
for i in range(len(layer_structure) - 1):
+
+ # Add a fully-connected layer
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
- if activation_func == "relu":
- linears.append(torch.nn.ReLU())
- elif activation_func == "leakyrelu":
- linears.append(torch.nn.LeakyReLU())
- elif activation_func == 'linear' or activation_func is None:
+ # Add an activation func
+ if activation_func == "linear" or activation_func is None:
pass
+ elif activation_func in self.activation_dict:
+ linears.append(self.activation_dict[activation_func]())
else:
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
+ # Add layer normalization
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
+ # Add dropout expect last layer
+ if use_dropout and i < len(layer_structure) - 3:
+ linears.append(torch.nn.Dropout(p=0.3))
+
self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
@@ -53,9 +72,24 @@ class HypernetworkModule(torch.nn.Module):
else:
for layer in self.linear:
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
- layer.weight.data.normal_(mean=0.0, std=0.01)
- layer.bias.data.zero_()
-
+ w, b = layer.weight.data, layer.bias.data
+ if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
+ normal_(w, mean=0.0, std=0.01)
+ normal_(b, mean=0.0, std=0.005)
+ elif weight_init == 'XavierUniform':
+ xavier_uniform_(w)
+ zeros_(b)
+ elif weight_init == 'XavierNormal':
+ xavier_normal_(w)
+ zeros_(b)
+ elif weight_init == 'KaimingUniform':
+ kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
+ zeros_(b)
+ elif weight_init == 'KaimingNormal':
+ kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
+ zeros_(b)
+ else:
+ raise KeyError(f"Key {weight_init} is not defined as initialization!")
self.to(devices.device)
def fix_old_state_dict(self, state_dict):
@@ -93,7 +127,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
self.filename = None
self.name = name
self.layers = {}
@@ -101,13 +135,15 @@ class Hypernetwork:
self.sd_checkpoint = None
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
- self.add_layer_norm = add_layer_norm
self.activation_func = activation_func
+ self.weight_init = weight_init
+ self.add_layer_norm = add_layer_norm
+ self.use_dropout = use_dropout
for size in enable_sizes or []:
self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
)
def weights(self):
@@ -129,8 +165,10 @@ class Hypernetwork:
state_dict['step'] = self.step
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
- state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['activation_func'] = self.activation_func
+ state_dict['is_layer_norm'] = self.add_layer_norm
+ state_dict['weight_initialization'] = self.weight_init
+ state_dict['use_dropout'] = self.use_dropout
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@@ -144,14 +182,21 @@ class Hypernetwork:
state_dict = torch.load(filename, map_location='cpu')
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
- self.add_layer_norm = state_dict.get('is_layer_norm', False)
+ print(self.layer_structure)
self.activation_func = state_dict.get('activation_func', None)
+ print(f"Activation function is {self.activation_func}")
+ self.weight_init = state_dict.get('weight_initialization', 'Normal')
+ print(f"Weight initialization is {self.weight_init}")
+ self.add_layer_norm = state_dict.get('is_layer_norm', False)
+ print(f"Layer norm is set to {self.add_layer_norm}")
+ self.use_dropout = state_dict.get('use_dropout', False)
+ print(f"Dropout usage is set to {self.use_dropout}" )
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func),
- HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
)
self.name = state_dict.get('name', self.name)
@@ -164,13 +209,16 @@ def list_hypernetworks(path):
res = {}
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
name = os.path.splitext(os.path.basename(filename))[0]
- res[name] = filename
+ # Prevent a hypothetical "None.pt" from being listed.
+ if name != "None":
+ res[name] = filename
return res
def load_hypernetwork(filename):
path = shared.hypernetworks.get(filename, None)
- if path is not None:
+ # Prevent any file named "None.pt" from being loaded.
+ if path is not None and filename != "None":
print(f"Loading hypernetwork {filename}")
try:
shared.loaded_hypernetwork = Hypernetwork()
@@ -255,11 +303,41 @@ def stack_conds(conds):
return torch.stack(conds)
+def statistics(data):
+ if len(data) < 2:
+ std = 0
+ else:
+ std = stdev(data)
+ total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
+ recent_data = data[-32:]
+ if len(recent_data) < 2:
+ std = 0
+ else:
+ std = stdev(recent_data)
+ recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
+ return total_information, recent_information
+
+
+def report_statistics(loss_info:dict):
+ keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
+ for key in keys:
+ try:
+ print("Loss statistics for file " + key)
+ info, recent = statistics(list(loss_info[key]))
+ print(info)
+ print(recent)
+ except Exception as e:
+ print(e)
+
+
+
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
- assert hypernetwork_name, 'hypernetwork not selected'
+ save_hypernetwork_every = save_hypernetwork_every or 0
+ create_image_every = create_image_every or 0
+ textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
@@ -285,35 +363,51 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
else:
images_dir = None
+ hypernetwork = shared.loaded_hypernetwork
+ checkpoint = sd_models.select_checkpoint()
+
+ ititial_step = hypernetwork.step or 0
+ if ititial_step >= steps:
+ shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ return hypernetwork, filename
+
+ scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+
+ # dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
- hypernetwork = shared.loaded_hypernetwork
+ size = len(ds.indexes)
+ loss_dict = defaultdict(lambda : deque(maxlen = 1024))
+ losses = torch.zeros((size,))
+ previous_mean_losses = [0]
+ previous_mean_loss = 0
+ print("Mean loss of {} elements".format(size))
+
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
+ # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
+ optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
- losses = torch.zeros((32,))
+ steps_without_grad = 0
last_saved_file = "<none>"
last_saved_image = "<none>"
forced_filename = "<none>"
- ititial_step = hypernetwork.step or 0
- if ititial_step > steps:
- return hypernetwork, filename
-
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
-
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
hypernetwork.step = i + ititial_step
-
+ if len(loss_dict) > 0:
+ previous_mean_losses = [i[-1] for i in loss_dict.values()]
+ previous_mean_loss = mean(previous_mean_losses)
+
scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished:
break
@@ -330,28 +424,46 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
del c
losses[hypernetwork.step % losses.shape[0]] = loss.item()
-
+ for entry in entries:
+ loss_dict[entry.filename].append(loss.item())
+
optimizer.zero_grad()
+ weights[0].grad = None
loss.backward()
+
+ if weights[0].grad is None:
+ steps_without_grad += 1
+ else:
+ steps_without_grad = 0
+ assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
+
optimizer.step()
- mean_loss = losses.mean()
- if torch.isnan(mean_loss):
+
+ steps_done = hypernetwork.step + 1
+
+ if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
raise RuntimeError("Loss diverged.")
- pbar.set_description(f"loss: {mean_loss:.7f}")
+
+ if len(previous_mean_losses) > 1:
+ std = stdev(previous_mean_losses)
+ else:
+ std = 0
+ dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
+ pbar.set_description(dataset_loss_info)
- if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
+ if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
- hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(last_saved_file)
+ hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{mean_loss:.7f}",
+ "loss": f"{previous_mean_loss:.7f}",
"learn_rate": scheduler.learn_rate
})
- if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{hypernetwork_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()
@@ -388,30 +500,39 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if image is not None:
shared.state.current_image = image
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename)
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
shared.state.textinfo = f"""
<p>
-Loss: {mean_loss:.7f}<br/>
+Loss: {previous_mean_loss:.7f}<br/>
Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
+
+ report_statistics(loss_dict)
- checkpoint = sd_models.select_checkpoint()
-
- hypernetwork.sd_checkpoint = checkpoint.hash
- hypernetwork.sd_checkpoint_name = checkpoint.model_name
- # Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention).
- hypernetwork.name = hypernetwork_name
- filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(filename)
+ filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
return hypernetwork, filename
-
+def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
+ old_hypernetwork_name = hypernetwork.name
+ old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
+ old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
+ try:
+ hypernetwork.sd_checkpoint = checkpoint.hash
+ hypernetwork.sd_checkpoint_name = checkpoint.model_name
+ hypernetwork.name = hypernetwork_name
+ hypernetwork.save(filename)
+ except:
+ hypernetwork.sd_checkpoint = old_sd_checkpoint
+ hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
+ hypernetwork.name = old_hypernetwork_name
+ raise
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index e6f50a1f..aad09ffc 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -3,14 +3,15 @@ import os
import re
import gradio as gr
-
-import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess
-from modules import sd_hijack, shared, devices
+import modules.textual_inversion.textual_inversion
+from modules import devices, sd_hijack, shared
from modules.hypernetworks import hypernetwork
+not_available = ["hardswish", "multiheadattention"]
+keys = ["linear"] + list(x for x in hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
-def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, add_layer_norm=False, activation_func=None):
+def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
@@ -25,8 +26,10 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
name=name,
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
- add_layer_norm=add_layer_norm,
activation_func=activation_func,
+ weight_init=weight_init,
+ add_layer_norm=add_layer_norm,
+ use_dropout=use_dropout,
)
hypernet.save(fn)
diff --git a/modules/images.py b/modules/images.py
index b9589563..a0728553 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -1,4 +1,8 @@
import datetime
+import sys
+import traceback
+
+import pytz
import io
import math
import os
@@ -12,7 +16,7 @@ from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
from fonts.ttf import Roboto
import string
-from modules import sd_samplers, shared
+from modules import sd_samplers, shared, script_callbacks
from modules.shared import opts, cmd_opts
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
@@ -273,10 +277,15 @@ invalid_filename_chars = '<>:"/\\|?*\n'
invalid_filename_prefix = ' '
invalid_filename_postfix = ' .'
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
+re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
+re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
max_filename_part_length = 128
def sanitize_filename_part(text, replace_spaces=True):
+ if text is None:
+ return None
+
if replace_spaces:
text = text.replace(' ', '_')
@@ -286,49 +295,104 @@ def sanitize_filename_part(text, replace_spaces=True):
return text
-def apply_filename_pattern(x, p, seed, prompt):
- max_prompt_words = opts.directories_max_prompt_words
-
- if seed is not None:
- x = x.replace("[seed]", str(seed))
+class FilenameGenerator:
+ replacements = {
+ 'seed': lambda self: self.seed if self.seed is not None else '',
+ 'steps': lambda self: self.p and self.p.steps,
+ 'cfg': lambda self: self.p and self.p.cfg_scale,
+ 'width': lambda self: self.image.width,
+ 'height': lambda self: self.image.height,
+ 'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
+ 'sampler': lambda self: self.p and sanitize_filename_part(sd_samplers.samplers[self.p.sampler_index].name, replace_spaces=False),
+ 'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
+ 'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
+ 'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
+ 'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
+ 'prompt': lambda self: sanitize_filename_part(self.prompt),
+ 'prompt_no_styles': lambda self: self.prompt_no_style(),
+ 'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
+ 'prompt_words': lambda self: self.prompt_words(),
+ }
+ default_time_format = '%Y%m%d%H%M%S'
+
+ def __init__(self, p, seed, prompt, image):
+ self.p = p
+ self.seed = seed
+ self.prompt = prompt
+ self.image = image
+
+ def prompt_no_style(self):
+ if self.p is None or self.prompt is None:
+ return None
+
+ prompt_no_style = self.prompt
+ for style in shared.prompt_styles.get_style_prompts(self.p.styles):
+ if len(style) > 0:
+ for part in style.split("{prompt}"):
+ prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
+
+ prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
+
+ return sanitize_filename_part(prompt_no_style, replace_spaces=False)
+
+ def prompt_words(self):
+ words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0]
+ if len(words) == 0:
+ words = ["empty"]
+ return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False)
+
+ def datetime(self, *args):
+ time_datetime = datetime.datetime.now()
+
+ time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format
+ try:
+ time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
+ except pytz.exceptions.UnknownTimeZoneError as _:
+ time_zone = None
+
+ time_zone_time = time_datetime.astimezone(time_zone)
+ try:
+ formatted_time = time_zone_time.strftime(time_format)
+ except (ValueError, TypeError) as _:
+ formatted_time = time_zone_time.strftime(self.default_time_format)
+
+ return sanitize_filename_part(formatted_time, replace_spaces=False)
+
+ def apply(self, x):
+ res = ''
+
+ for m in re_pattern.finditer(x):
+ text, pattern = m.groups()
+ res += text
+
+ if pattern is None:
+ continue
- if p is not None:
- x = x.replace("[steps]", str(p.steps))
- x = x.replace("[cfg]", str(p.cfg_scale))
- x = x.replace("[width]", str(p.width))
- x = x.replace("[height]", str(p.height))
- x = x.replace("[styles]", sanitize_filename_part(", ".join([x for x in p.styles if not x == "None"]) or "None", replace_spaces=False))
- x = x.replace("[sampler]", sanitize_filename_part(sd_samplers.samplers[p.sampler_index].name, replace_spaces=False))
+ pattern_args = []
+ while True:
+ m = re_pattern_arg.match(pattern)
+ if m is None:
+ break
- x = x.replace("[model_hash]", getattr(p, "sd_model_hash", shared.sd_model.sd_model_hash))
- x = x.replace("[date]", datetime.date.today().isoformat())
- x = x.replace("[datetime]", datetime.datetime.now().strftime("%Y%m%d%H%M%S"))
- x = x.replace("[job_timestamp]", getattr(p, "job_timestamp", shared.state.job_timestamp))
+ pattern, arg = m.groups()
+ pattern_args.insert(0, arg)
- # Apply [prompt] at last. Because it may contain any replacement word.^M
- if prompt is not None:
- x = x.replace("[prompt]", sanitize_filename_part(prompt))
- if "[prompt_no_styles]" in x:
- prompt_no_style = prompt
- for style in shared.prompt_styles.get_style_prompts(p.styles):
- if len(style) > 0:
- style_parts = [y for y in style.split("{prompt}")]
- for part in style_parts:
- prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
- prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
- x = x.replace("[prompt_no_styles]", sanitize_filename_part(prompt_no_style, replace_spaces=False))
+ fun = self.replacements.get(pattern.lower())
+ if fun is not None:
+ try:
+ replacement = fun(self, *pattern_args)
+ except Exception:
+ replacement = None
+ print(f"Error adding [{pattern}] to filename", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
- x = x.replace("[prompt_spaces]", sanitize_filename_part(prompt, replace_spaces=False))
- if "[prompt_words]" in x:
- words = [x for x in re_nonletters.split(prompt or "") if len(x) > 0]
- if len(words) == 0:
- words = ["empty"]
- x = x.replace("[prompt_words]", sanitize_filename_part(" ".join(words[0:max_prompt_words]), replace_spaces=False))
+ if replacement is not None:
+ res += str(replacement)
+ continue
- if cmd_opts.hide_ui_dir_config:
- x = re.sub(r'^[\\/]+|\.{2,}[\\/]+|[\\/]+\.{2,}', '', x)
+ res += f'[{pattern}]'
- return x
+ return res
def get_next_sequence_number(path, basename):
@@ -354,7 +418,7 @@ def get_next_sequence_number(path, basename):
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
- '''Save an image.
+ """Save an image.
Args:
image (`PIL.Image`):
@@ -385,52 +449,57 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
The full path of the saved imaged.
txt_fullfn (`str` or None):
If a text file is saved for this image, this will be its full path. Otherwise None.
- '''
- if short_filename or prompt is None or seed is None:
- file_decoration = ""
- elif opts.save_to_dirs:
- file_decoration = opts.samples_filename_pattern or "[seed]"
- else:
- file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
-
- if file_decoration != "":
- file_decoration = "-" + file_decoration.lower()
-
- file_decoration = apply_filename_pattern(file_decoration, p, seed, prompt) + suffix
-
- if extension == 'png' and opts.enable_pnginfo and info is not None:
- pnginfo = PngImagePlugin.PngInfo()
-
- if existing_info is not None:
- for k, v in existing_info.items():
- pnginfo.add_text(k, str(v))
-
- pnginfo.add_text(pnginfo_section_name, info)
- else:
- pnginfo = None
+ """
+ namegen = FilenameGenerator(p, seed, prompt, image)
if save_to_dirs is None:
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
if save_to_dirs:
- dirname = apply_filename_pattern(opts.directories_filename_pattern or "[prompt_words]", p, seed, prompt).strip('\\ /')
+ dirname = namegen.apply(opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /')
path = os.path.join(path, dirname)
os.makedirs(path, exist_ok=True)
if forced_filename is None:
- basecount = get_next_sequence_number(path, basename)
- fullfn = "a.png"
- fullfn_without_extension = "a"
- for i in range(500):
- fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
- fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
- fullfn_without_extension = os.path.join(path, f"{fn}{file_decoration}")
- if not os.path.exists(fullfn):
- break
+ if short_filename or seed is None:
+ file_decoration = ""
+ elif opts.save_to_dirs:
+ file_decoration = opts.samples_filename_pattern or "[seed]"
+ else:
+ file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
+
+ add_number = opts.save_images_add_number or file_decoration == ''
+
+ if file_decoration != "" and add_number:
+ file_decoration = "-" + file_decoration
+
+ file_decoration = namegen.apply(file_decoration) + suffix
+
+ if add_number:
+ basecount = get_next_sequence_number(path, basename)
+ fullfn = None
+ for i in range(500):
+ fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
+ fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
+ if not os.path.exists(fullfn):
+ break
+ else:
+ fullfn = os.path.join(path, f"{file_decoration}.{extension}")
else:
fullfn = os.path.join(path, f"{forced_filename}.{extension}")
- fullfn_without_extension = os.path.join(path, forced_filename)
+
+ pnginfo = existing_info or {}
+ if info is not None:
+ pnginfo[pnginfo_section_name] = info
+
+ params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo)
+ script_callbacks.before_image_saved_callback(params)
+
+ image = params.image
+ fullfn = params.filename
+ info = params.pnginfo.get(pnginfo_section_name, None)
+ fullfn_without_extension, extension = os.path.splitext(params.filename)
def exif_bytes():
return piexif.dump({
@@ -439,12 +508,20 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
},
})
- if extension.lower() in ("jpg", "jpeg", "webp"):
+ if extension.lower() == '.png':
+ pnginfo_data = PngImagePlugin.PngInfo()
+ for k, v in params.pnginfo.items():
+ pnginfo_data.add_text(k, str(v))
+
+ image.save(fullfn, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
+
+ elif extension.lower() in (".jpg", ".jpeg", ".webp"):
image.save(fullfn, quality=opts.jpeg_quality)
+
if opts.enable_pnginfo and info is not None:
piexif.insert(exif_bytes(), fullfn)
else:
- image.save(fullfn, quality=opts.jpeg_quality, pnginfo=pnginfo)
+ image.save(fullfn, quality=opts.jpeg_quality)
target_side_length = 4000
oversize = image.width > target_side_length or image.height > target_side_length
@@ -467,6 +544,8 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
else:
txt_fullfn = None
+ script_callbacks.image_saved_callback(params)
+
return fullfn, txt_fullfn
diff --git a/modules/images_history.py b/modules/images_history.py
deleted file mode 100644
index 46b23e56..00000000
--- a/modules/images_history.py
+++ /dev/null
@@ -1,183 +0,0 @@
-import os
-import shutil
-import sys
-
-def traverse_all_files(output_dir, image_list, curr_dir=None):
- curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir)
- try:
- f_list = os.listdir(curr_path)
- except:
- if curr_dir[-10:].rfind(".") > 0 and curr_dir[-4:] != ".txt":
- image_list.append(curr_dir)
- return image_list
- for file in f_list:
- file = file if curr_dir is None else os.path.join(curr_dir, file)
- file_path = os.path.join(curr_path, file)
- if file[-4:] == ".txt":
- pass
- elif os.path.isfile(file_path) and file[-10:].rfind(".") > 0:
- image_list.append(file)
- else:
- image_list = traverse_all_files(output_dir, image_list, file)
- return image_list
-
-
-def get_recent_images(dir_name, page_index, step, image_index, tabname):
- page_index = int(page_index)
- image_list = []
- if not os.path.exists(dir_name):
- pass
- elif os.path.isdir(dir_name):
- image_list = traverse_all_files(dir_name, image_list)
- image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file)))
- else:
- print(f'ERROR: "{dir_name}" is not a directory. Check the path in the settings.', file=sys.stderr)
- num = 48 if tabname != "extras" else 12
- max_page_index = len(image_list) // num + 1
- page_index = max_page_index if page_index == -1 else page_index + step
- page_index = 1 if page_index < 1 else page_index
- page_index = max_page_index if page_index > max_page_index else page_index
- idx_frm = (page_index - 1) * num
- image_list = image_list[idx_frm:idx_frm + num]
- image_index = int(image_index)
- if image_index < 0 or image_index > len(image_list) - 1:
- current_file = None
- hidden = None
- else:
- current_file = image_list[int(image_index)]
- hidden = os.path.join(dir_name, current_file)
- return [os.path.join(dir_name, file) for file in image_list], page_index, image_list, current_file, hidden, ""
-
-
-def first_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, 1, 0, image_index, tabname)
-
-
-def end_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, -1, 0, image_index, tabname)
-
-
-def prev_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, page_index, -1, image_index, tabname)
-
-
-def next_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, page_index, 1, image_index, tabname)
-
-
-def page_index_change(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, page_index, 0, image_index, tabname)
-
-
-def show_image_info(num, image_path, filenames):
- # print(f"select image {num}")
- file = filenames[int(num)]
- return file, num, os.path.join(image_path, file)
-
-
-def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, image_index):
- if name == "":
- return filenames, delete_num
- else:
- delete_num = int(delete_num)
- index = list(filenames).index(name)
- i = 0
- new_file_list = []
- for name in filenames:
- if i >= index and i < index + delete_num:
- path = os.path.join(dir_name, name)
- if os.path.exists(path):
- print(f"Delete file {path}")
- os.remove(path)
- txt_file = os.path.splitext(path)[0] + ".txt"
- if os.path.exists(txt_file):
- os.remove(txt_file)
- else:
- print(f"Not exists file {path}")
- else:
- new_file_list.append(name)
- i += 1
- return new_file_list, 1
-
-
-def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
- if opts.outdir_samples != "":
- dir_name = opts.outdir_samples
- elif tabname == "txt2img":
- dir_name = opts.outdir_txt2img_samples
- elif tabname == "img2img":
- dir_name = opts.outdir_img2img_samples
- elif tabname == "extras":
- dir_name = opts.outdir_extras_samples
- else:
- return
- with gr.Row():
- renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page")
- first_page = gr.Button('First Page')
- prev_page = gr.Button('Prev Page')
- page_index = gr.Number(value=1, label="Page Index")
- next_page = gr.Button('Next Page')
- end_page = gr.Button('End Page')
- with gr.Row(elem_id=tabname + "_images_history"):
- with gr.Row():
- with gr.Column(scale=2):
- history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
- with gr.Row():
- delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
- delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
- with gr.Column():
- with gr.Row():
- pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
- pnginfo_send_to_img2img = gr.Button('Send to img2img')
- with gr.Row():
- with gr.Column():
- img_file_info = gr.Textbox(label="Generate Info", interactive=False)
- img_file_name = gr.Textbox(label="File Name", interactive=False)
- with gr.Row():
- # hiden items
-
- img_path = gr.Textbox(dir_name.rstrip("/"), visible=False)
- tabname_box = gr.Textbox(tabname, visible=False)
- image_index = gr.Textbox(value=-1, visible=False)
- set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index", visible=False)
- filenames = gr.State()
- hidden = gr.Image(type="pil", visible=False)
- info1 = gr.Textbox(visible=False)
- info2 = gr.Textbox(visible=False)
-
- # turn pages
- gallery_inputs = [img_path, page_index, image_index, tabname_box]
- gallery_outputs = [history_gallery, page_index, filenames, img_file_name, hidden, img_file_name]
-
- first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- prev_page.click(prev_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- end_page.click(end_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- page_index.submit(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- renew_page.click(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- # page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index])
-
- # other funcitons
- set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, img_path, filenames], outputs=[img_file_name, image_index, hidden])
- img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
- delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_path, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
- hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
-
- # pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
- switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
- switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
-
-
-def create_history_tabs(gr, opts, run_pnginfo, switch_dict):
- with gr.Blocks(analytics_enabled=False) as images_history:
- with gr.Tabs() as tabs:
- with gr.Tab("txt2img history"):
- with gr.Blocks(analytics_enabled=False) as images_history_txt2img:
- show_images_history(gr, opts, "txt2img", run_pnginfo, switch_dict)
- with gr.Tab("img2img history"):
- with gr.Blocks(analytics_enabled=False) as images_history_img2img:
- show_images_history(gr, opts, "img2img", run_pnginfo, switch_dict)
- with gr.Tab("extras history"):
- with gr.Blocks(analytics_enabled=False) as images_history_img2img:
- show_images_history(gr, opts, "extras", run_pnginfo, switch_dict)
- return images_history
diff --git a/modules/img2img.py b/modules/img2img.py
index eea5199b..efda26e1 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -19,7 +19,7 @@ import modules.scripts
def process_batch(p, input_dir, output_dir, args):
processing.fix_seed(p)
- images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
+ images = shared.listfiles(input_dir)
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
@@ -39,6 +39,8 @@ def process_batch(p, input_dir, output_dir, args):
break
img = Image.open(image)
+ # Use the EXIF orientation of photos taken by smartphones.
+ img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size
proc = modules.scripts.scripts_img2img.run(p, *args)
@@ -56,24 +58,30 @@ def process_batch(p, input_dir, output_dir, args):
processed_image.save(os.path.join(output_dir, filename))
-def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
+def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1
is_batch = mode == 2
if is_inpaint:
+ # Drawn mask
if mask_mode == 0:
image = init_img_with_mask['image']
mask = init_img_with_mask['mask']
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
image = image.convert('RGB')
+ # Uploaded mask
else:
image = init_img_inpaint
mask = init_mask_inpaint
+ # No mask
else:
image = init_img
mask = None
+ # Use the EXIF orientation of photos taken by smartphones.
+ image = ImageOps.exif_transpose(image)
+
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
p = StableDiffusionProcessingImg2Img(
@@ -109,7 +117,8 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
inpainting_mask_invert=inpainting_mask_invert,
)
- shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
+ p.scripts = modules.scripts.scripts_txt2img
+ p.script_args = args
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/lowvram.py b/modules/lowvram.py
index 7eba1349..f327c3df 100644
--- a/modules/lowvram.py
+++ b/modules/lowvram.py
@@ -1,9 +1,8 @@
import torch
-from modules.devices import get_optimal_device
+from modules import devices
module_in_gpu = None
cpu = torch.device("cpu")
-device = gpu = get_optimal_device()
def send_everything_to_cpu():
@@ -33,7 +32,7 @@ def setup_for_low_vram(sd_model, use_medvram):
if module_in_gpu is not None:
module_in_gpu.to(cpu)
- module.to(gpu)
+ module.to(devices.device)
module_in_gpu = module
# see below for register_forward_pre_hook;
@@ -51,7 +50,7 @@ def setup_for_low_vram(sd_model, use_medvram):
# send the model to GPU. Then put modules back. the modules will be in CPU.
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None
- sd_model.to(device)
+ sd_model.to(devices.device)
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored
# register hooks for those the first two models
@@ -70,7 +69,7 @@ def setup_for_low_vram(sd_model, use_medvram):
# so that only one of them is in GPU at a time
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
- sd_model.model.to(device)
+ sd_model.model.to(devices.device)
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
# install hooks for bits of third model
diff --git a/modules/processing.py b/modules/processing.py
index ff1ec4c9..b1df4918 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -47,6 +47,25 @@ def apply_color_correction(correction, image):
return image
+def apply_overlay(image, paste_loc, index, overlays):
+ if overlays is None or index >= len(overlays):
+ return image
+
+ overlay = overlays[index]
+
+ if paste_loc is not None:
+ x, y, w, h = paste_loc
+ base_image = Image.new('RGBA', (overlay.width, overlay.height))
+ image = images.resize_image(1, image, w, h)
+ base_image.paste(image, (x, y))
+ image = base_image
+
+ image = image.convert('RGBA')
+ image.alpha_composite(overlay)
+ image = image.convert('RGB')
+
+ return image
+
def get_correct_sampler(p):
if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
return sd_samplers.samplers
@@ -58,9 +77,8 @@ def get_correct_sampler(p):
class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
-
"""
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str="", styles: List[str]=None, seed: int=-1, subseed: int=-1, subseed_strength: float=0, seed_resize_from_h: int=-1, seed_resize_from_w: int=-1, seed_enable_extras: bool=True, sampler_index: int=0, batch_size: int=1, n_iter: int=1, steps:int =50, cfg_scale:float=7.0, width:int=512, height:int=512, restore_faces:bool=False, tiling:bool=False, do_not_save_samples:bool=False, do_not_save_grid:bool=False, extra_generation_params: Dict[Any,Any]=None, overlay_images: Any=None, negative_prompt: str=None, eta: float =None, do_not_reload_embeddings: bool=False, denoising_strength: float = 0, ddim_discretize: str = "uniform", s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0):
+ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_index: int = 0, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None):
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
@@ -90,13 +108,14 @@ class StableDiffusionProcessing():
self.do_not_reload_embeddings = do_not_reload_embeddings
self.paste_to = None
self.color_corrections = None
- self.denoising_strength: float = 0
+ self.denoising_strength: float = denoising_strength
self.sampler_noise_scheduler_override = None
- self.ddim_discretize = opts.ddim_discretize
+ self.ddim_discretize = ddim_discretize or opts.ddim_discretize
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_noise = s_noise or opts.s_noise
+ self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
if not seed_enable_extras:
self.subseed = -1
@@ -104,6 +123,78 @@ class StableDiffusionProcessing():
self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
+ self.scripts = None
+ self.script_args = None
+ self.all_prompts = None
+ self.all_seeds = None
+ self.all_subseeds = None
+
+ def txt2img_image_conditioning(self, x, width=None, height=None):
+ if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
+ # Dummy zero conditioning if we're not using inpainting model.
+ # Still takes up a bit of memory, but no encoder call.
+ # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
+ return torch.zeros(
+ x.shape[0], 5, 1, 1,
+ dtype=x.dtype,
+ device=x.device
+ )
+
+ height = height or self.height
+ width = width or self.width
+
+ # The "masked-image" in this case will just be all zeros since the entire image is masked.
+ image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
+ image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
+
+ # Add the fake full 1s mask to the first dimension.
+ image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
+ image_conditioning = image_conditioning.to(x.dtype)
+
+ return image_conditioning
+
+ def img2img_image_conditioning(self, source_image, latent_image, image_mask = None):
+ if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
+ # Dummy zero conditioning if we're not using inpainting model.
+ return torch.zeros(
+ latent_image.shape[0], 5, 1, 1,
+ dtype=latent_image.dtype,
+ device=latent_image.device
+ )
+
+ # Handle the different mask inputs
+ if image_mask is not None:
+ if torch.is_tensor(image_mask):
+ conditioning_mask = image_mask
+ else:
+ conditioning_mask = np.array(image_mask.convert("L"))
+ conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
+ conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
+
+ # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
+ conditioning_mask = torch.round(conditioning_mask)
+ else:
+ conditioning_mask = torch.ones(1, 1, *source_image.shape[-2:])
+
+ # Create another latent image, this time with a masked version of the original input.
+ # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
+ conditioning_mask = conditioning_mask.to(source_image.device)
+ conditioning_image = torch.lerp(
+ source_image,
+ source_image * (1.0 - conditioning_mask),
+ getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
+ )
+
+ # Encode the new masked image using first stage of network.
+ conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
+
+ # Create the concatenated conditioning tensor to be fed to `c_concat`
+ conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
+ conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
+ image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
+ image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
+
+ return image_conditioning
def init(self, all_prompts, all_seeds, all_subseeds):
pass
@@ -305,6 +396,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
+ "Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength),
"Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
@@ -326,6 +418,22 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
def process_images(p: StableDiffusionProcessing) -> Processed:
+ stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
+
+ try:
+ for k, v in p.override_settings.items():
+ opts.data[k] = v # we don't call onchange for simplicity which makes changing model, hypernet impossible
+
+ res = process_images_inner(p)
+
+ finally:
+ for k, v in stored_opts.items():
+ opts.data[k] = v
+
+ return res
+
+
+def process_images_inner(p: StableDiffusionProcessing) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
if type(p.prompt) == list:
@@ -350,32 +458,35 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
shared.prompt_styles.apply_styles(p)
if type(p.prompt) == list:
- all_prompts = p.prompt
+ p.all_prompts = p.prompt
else:
- all_prompts = p.batch_size * p.n_iter * [p.prompt]
+ p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
if type(seed) == list:
- all_seeds = seed
+ p.all_seeds = seed
else:
- all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
+ p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
if type(subseed) == list:
- all_subseeds = subseed
+ p.all_subseeds = subseed
else:
- all_subseeds = [int(subseed) + x for x in range(len(all_prompts))]
+ p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0):
- return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
+ return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
+ if p.scripts is not None:
+ p.scripts.process(p)
+
infotexts = []
output_images = []
with torch.no_grad(), p.sd_model.ema_scope():
with devices.autocast():
- p.init(all_prompts, all_seeds, all_subseeds)
+ p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
if state.job_count == -1:
state.job_count = p.n_iter
@@ -387,15 +498,13 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if state.interrupted:
break
- prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
- seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
- subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
+ prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
+ seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
+ subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
- if (len(prompts) == 0):
+ if len(prompts) == 0:
break
- #uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
- #c = p.sd_model.get_learned_conditioning(prompts)
with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
@@ -442,22 +551,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
- images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
+ image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
+ images.save_image(image_without_cc, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image)
- if p.overlay_images is not None and i < len(p.overlay_images):
- overlay = p.overlay_images[i]
-
- if p.paste_to is not None:
- x, y, w, h = p.paste_to
- base_image = Image.new('RGBA', (overlay.width, overlay.height))
- image = images.resize_image(1, image, w, h)
- base_image.paste(image, (x, y))
- image = base_image
-
- image = image.convert('RGBA')
- image.alpha_composite(overlay)
- image = image.convert('RGB')
+ image = apply_overlay(image, p.paste_to, i, p.overlay_images)
if opts.samples_save and not p.do_not_save_samples:
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
@@ -490,10 +588,16 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
index_of_first_image = 1
if opts.grid_save:
- images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
+ images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
devices.torch_gc()
- return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
+
+ res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
+
+ if p.scripts is not None:
+ p.scripts.postprocess(p, res)
+
+ return res
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
@@ -515,6 +619,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
else:
state.job_count = state.job_count * 2
+ self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
+
if self.firstphase_width == 0 or self.firstphase_height == 0:
desired_pixel_count = 512 * 512
actual_pixel_count = self.width * self.height
@@ -536,41 +642,19 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
firstphase_width_truncated = self.firstphase_height * self.width / self.height
firstphase_height_truncated = self.firstphase_height
- self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
- def create_dummy_mask(self, x, width=None, height=None):
- if self.sampler.conditioning_key in {'hybrid', 'concat'}:
- height = height or self.height
- width = width or self.width
-
- # The "masked-image" in this case will just be all zeros since the entire image is masked.
- image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
- image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
-
- # Add the fake full 1s mask to the first dimension.
- image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
- image_conditioning = image_conditioning.to(x.dtype)
-
- else:
- # Dummy zero conditioning if we're not using inpainting model.
- # Still takes up a bit of memory, but no encoder call.
- # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
- image_conditioning = torch.zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
-
- return image_conditioning
-
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x))
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x, self.firstphase_width, self.firstphase_height))
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x, self.firstphase_width, self.firstphase_height))
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
@@ -603,11 +687,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ image_conditioning = self.txt2img_image_conditioning(x)
+
# GC now before running the next img2img to prevent running out of memory
x = None
devices.torch_gc()
- samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=self.create_dummy_mask(samples))
+ samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning)
return samples
@@ -615,7 +701,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None
- def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs):
+ def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: Any=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs):
super().__init__(**kwargs)
self.init_images = init_images
@@ -706,6 +792,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
if self.overlay_images is not None:
self.overlay_images = self.overlay_images * self.batch_size
+
+ if self.color_corrections is not None and len(self.color_corrections) == 1:
+ self.color_corrections = self.color_corrections * self.batch_size
+
elif len(imgs) <= self.batch_size:
self.batch_size = len(imgs)
batch_images = np.array(imgs)
@@ -735,33 +825,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
- if self.sampler.conditioning_key in {'hybrid', 'concat'}:
- if self.image_mask is not None:
- conditioning_mask = np.array(self.image_mask.convert("L"))
- conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
- conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
-
- # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
- conditioning_mask = torch.round(conditioning_mask)
- else:
- conditioning_mask = torch.ones(1, 1, *image.shape[-2:])
-
- # Create another latent image, this time with a masked version of the original input.
- conditioning_mask = conditioning_mask.to(image.device)
- conditioning_image = image * (1.0 - conditioning_mask)
- conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
-
- # Create the concatenated conditioning tensor to be fed to `c_concat`
- conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=self.init_latent.shape[-2:])
- conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
- self.image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
- self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
- else:
- self.image_conditioning = torch.zeros(
- self.init_latent.shape[0], 5, 1, 1,
- dtype=self.init_latent.dtype,
- device=self.init_latent.device
- )
+ self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
new file mode 100644
index 00000000..6ea58d61
--- /dev/null
+++ b/modules/script_callbacks.py
@@ -0,0 +1,132 @@
+import sys
+import traceback
+from collections import namedtuple
+import inspect
+
+
+def report_exception(c, job):
+ print(f"Error executing callback {job} for {c.script}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+
+class ImageSaveParams:
+ def __init__(self, image, p, filename, pnginfo):
+ self.image = image
+ """the PIL image itself"""
+
+ self.p = p
+ """p object with processing parameters; either StableDiffusionProcessing or an object with same fields"""
+
+ self.filename = filename
+ """name of file that the image would be saved to"""
+
+ self.pnginfo = pnginfo
+ """dictionary with parameters for image's PNG info data; infotext will have the key 'parameters'"""
+
+
+ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
+callbacks_model_loaded = []
+callbacks_ui_tabs = []
+callbacks_ui_settings = []
+callbacks_before_image_saved = []
+callbacks_image_saved = []
+
+
+def clear_callbacks():
+ callbacks_model_loaded.clear()
+ callbacks_ui_tabs.clear()
+ callbacks_ui_settings.clear()
+ callbacks_before_image_saved.clear()
+ callbacks_image_saved.clear()
+
+
+def model_loaded_callback(sd_model):
+ for c in callbacks_model_loaded:
+ try:
+ c.callback(sd_model)
+ except Exception:
+ report_exception(c, 'model_loaded_callback')
+
+
+def ui_tabs_callback():
+ res = []
+
+ for c in callbacks_ui_tabs:
+ try:
+ res += c.callback() or []
+ except Exception:
+ report_exception(c, 'ui_tabs_callback')
+
+ return res
+
+
+def ui_settings_callback():
+ for c in callbacks_ui_settings:
+ try:
+ c.callback()
+ except Exception:
+ report_exception(c, 'ui_settings_callback')
+
+
+def before_image_saved_callback(params: ImageSaveParams):
+ for c in callbacks_image_saved:
+ try:
+ c.callback(params)
+ except Exception:
+ report_exception(c, 'before_image_saved_callback')
+
+
+def image_saved_callback(params: ImageSaveParams):
+ for c in callbacks_image_saved:
+ try:
+ c.callback(params)
+ except Exception:
+ report_exception(c, 'image_saved_callback')
+
+
+def add_callback(callbacks, fun):
+ stack = [x for x in inspect.stack() if x.filename != __file__]
+ filename = stack[0].filename if len(stack) > 0 else 'unknown file'
+
+ callbacks.append(ScriptCallback(filename, fun))
+
+
+def on_model_loaded(callback):
+ """register a function to be called when the stable diffusion model is created; the model is
+ passed as an argument"""
+ add_callback(callbacks_model_loaded, callback)
+
+
+def on_ui_tabs(callback):
+ """register a function to be called when the UI is creating new tabs.
+ The function must either return a None, which means no new tabs to be added, or a list, where
+ each element is a tuple:
+ (gradio_component, title, elem_id)
+
+ gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks)
+ title is tab text displayed to user in the UI
+ elem_id is HTML id for the tab
+ """
+ add_callback(callbacks_ui_tabs, callback)
+
+
+def on_ui_settings(callback):
+ """register a function to be called before UI settings are populated; add your settings
+ by using shared.opts.add_option(shared.OptionInfo(...)) """
+ add_callback(callbacks_ui_settings, callback)
+
+
+def on_before_image_saved(callback):
+ """register a function to be called before an image is saved to a file.
+ The callback is called with one argument:
+ - params: ImageSaveParams - parameters the image is to be saved with. You can change fields in this object.
+ """
+ add_callback(callbacks_before_image_saved, callback)
+
+
+def on_image_saved(callback):
+ """register a function to be called after an image is saved to a file.
+ The callback is called with one argument:
+ - params: ImageSaveParams - parameters the image was saved with. Changing fields in this object does nothing.
+ """
+ add_callback(callbacks_image_saved, callback)
diff --git a/modules/scripts.py b/modules/scripts.py
index 1039fa9c..533db45c 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -1,86 +1,171 @@
import os
import sys
import traceback
+from collections import namedtuple
import modules.ui as ui
import gradio as gr
from modules.processing import StableDiffusionProcessing
-from modules import shared
+from modules import shared, paths, script_callbacks, extensions
+
+AlwaysVisible = object()
+
class Script:
filename = None
args_from = None
args_to = None
+ alwayson = False
+
+ infotext_fields = None
+ """if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
+ parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
+ """
- # The title of the script. This is what will be displayed in the dropdown menu.
def title(self):
+ """this function should return the title of the script. This is what will be displayed in the dropdown menu."""
+
raise NotImplementedError()
- # How the script is displayed in the UI. See https://gradio.app/docs/#components
- # for the different UI components you can use and how to create them.
- # Most UI components can return a value, such as a boolean for a checkbox.
- # The returned values are passed to the run method as parameters.
def ui(self, is_img2img):
+ """this function should create gradio UI elements. See https://gradio.app/docs/#components
+ The return value should be an array of all components that are used in processing.
+ Values of those returned componenbts will be passed to run() and process() functions.
+ """
+
pass
- # Determines when the script should be shown in the dropdown menu via the
- # returned value. As an example:
- # is_img2img is True if the current tab is img2img, and False if it is txt2img.
- # Thus, return is_img2img to only show the script on the img2img tab.
def show(self, is_img2img):
+ """
+ is_img2img is True if this function is called for the img2img interface, and Fasle otherwise
+
+ This function should return:
+ - False if the script should not be shown in UI at all
+ - True if the script should be shown in UI if it's scelected in the scripts drowpdown
+ - script.AlwaysVisible if the script should be shown in UI at all times
+ """
+
return True
- # This is where the additional processing is implemented. The parameters include
- # self, the model object "p" (a StableDiffusionProcessing class, see
- # processing.py), and the parameters returned by the ui method.
- # Custom functions can be defined here, and additional libraries can be imported
- # to be used in processing. The return value should be a Processed object, which is
- # what is returned by the process_images method.
- def run(self, *args):
+ def run(self, p, *args):
+ """
+ This function is called if the script has been selected in the script dropdown.
+ It must do all processing and return the Processed object with results, same as
+ one returned by processing.process_images.
+
+ Usually the processing is done by calling the processing.process_images function.
+
+ args contains all values returned by components from ui()
+ """
+
raise NotImplementedError()
- # The description method is currently unused.
- # To add a description that appears when hovering over the title, amend the "titles"
- # dict in script.js to include the script title (returned by title) as a key, and
- # your description as the value.
+ def process(self, p, *args):
+ """
+ This function is called before processing begins for AlwaysVisible scripts.
+ You can modify the processing object (p) here, inject hooks, etc.
+ args contains all values returned by components from ui()
+ """
+
+ pass
+
+ def postprocess(self, p, processed, *args):
+ """
+ This function is called after processing ends for AlwaysVisible scripts.
+ args contains all values returned by components from ui()
+ """
+
+ pass
+
def describe(self):
+ """unused"""
return ""
+current_basedir = paths.script_path
+
+
+def basedir():
+ """returns the base directory for the current script. For scripts in the main scripts directory,
+ this is the main directory (where webui.py resides), and for scripts in extensions directory
+ (ie extensions/aesthetic/script/aesthetic.py), this is extension's directory (extensions/aesthetic)
+ """
+ return current_basedir
+
+
scripts_data = []
+ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
+ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir"])
-def load_scripts(basedir):
- if not os.path.exists(basedir):
- return
+def list_scripts(scriptdirname, extension):
+ scripts_list = []
- for filename in sorted(os.listdir(basedir)):
- path = os.path.join(basedir, filename)
+ basedir = os.path.join(paths.script_path, scriptdirname)
+ if os.path.exists(basedir):
+ for filename in sorted(os.listdir(basedir)):
+ scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename)))
+
+ for ext in extensions.active():
+ scripts_list += ext.list_files(scriptdirname, extension)
+
+ scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
+
+ return scripts_list
- if os.path.splitext(path)[1].lower() != '.py':
- continue
- if not os.path.isfile(path):
+def list_files_with_name(filename):
+ res = []
+
+ dirs = [paths.script_path] + [ext.path for ext in extensions.active()]
+
+ for dirpath in dirs:
+ if not os.path.isdir(dirpath):
continue
+ path = os.path.join(dirpath, filename)
+ if os.path.isfile(filename):
+ res.append(path)
+
+ return res
+
+
+def load_scripts():
+ global current_basedir
+ scripts_data.clear()
+ script_callbacks.clear_callbacks()
+
+ scripts_list = list_scripts("scripts", ".py")
+
+ syspath = sys.path
+
+ for scriptfile in sorted(scripts_list):
try:
- with open(path, "r", encoding="utf8") as file:
+ if scriptfile.basedir != paths.script_path:
+ sys.path = [scriptfile.basedir] + sys.path
+ current_basedir = scriptfile.basedir
+
+ with open(scriptfile.path, "r", encoding="utf8") as file:
text = file.read()
from types import ModuleType
- compiled = compile(text, path, 'exec')
- module = ModuleType(filename)
+ compiled = compile(text, scriptfile.path, 'exec')
+ module = ModuleType(scriptfile.filename)
exec(compiled, module.__dict__)
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
- scripts_data.append((script_class, path))
+ scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir))
except Exception:
- print(f"Error loading script: {filename}", file=sys.stderr)
+ print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
+ finally:
+ sys.path = syspath
+ current_basedir = paths.script_path
+
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
@@ -96,56 +181,80 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
class ScriptRunner:
def __init__(self):
self.scripts = []
+ self.selectable_scripts = []
+ self.alwayson_scripts = []
self.titles = []
+ self.infotext_fields = []
def setup_ui(self, is_img2img):
- for script_class, path in scripts_data:
+ for script_class, path, basedir in scripts_data:
script = script_class()
script.filename = path
- if not script.show(is_img2img):
- continue
+ visibility = script.show(is_img2img)
- self.scripts.append(script)
+ if visibility == AlwaysVisible:
+ self.scripts.append(script)
+ self.alwayson_scripts.append(script)
+ script.alwayson = True
- self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts]
+ elif visibility:
+ self.scripts.append(script)
+ self.selectable_scripts.append(script)
- dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index")
- dropdown.save_to_config = True
- inputs = [dropdown]
+ self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
- for script in self.scripts:
+ inputs = [None]
+ inputs_alwayson = [True]
+
+ def create_script_ui(script, inputs, inputs_alwayson):
script.args_from = len(inputs)
script.args_to = len(inputs)
controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
if controls is None:
- continue
+ return
for control in controls:
control.custom_script_source = os.path.basename(script.filename)
- control.visible = False
+ if not script.alwayson:
+ control.visible = False
+
+ if script.infotext_fields is not None:
+ self.infotext_fields += script.infotext_fields
inputs += controls
+ inputs_alwayson += [script.alwayson for _ in controls]
script.args_to = len(inputs)
+ for script in self.alwayson_scripts:
+ with gr.Group():
+ create_script_ui(script, inputs, inputs_alwayson)
+
+ dropdown = gr.Dropdown(label="Script", elem_id="script_list", choices=["None"] + self.titles, value="None", type="index")
+ dropdown.save_to_config = True
+ inputs[0] = dropdown
+
+ for script in self.selectable_scripts:
+ create_script_ui(script, inputs, inputs_alwayson)
+
def select_script(script_index):
- if 0 < script_index <= len(self.scripts):
- script = self.scripts[script_index-1]
+ if 0 < script_index <= len(self.selectable_scripts):
+ script = self.selectable_scripts[script_index-1]
args_from = script.args_from
args_to = script.args_to
else:
args_from = 0
args_to = 0
- return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))]
+ return [ui.gr_show(True if i == 0 else args_from <= i < args_to or is_alwayson) for i, is_alwayson in enumerate(inputs_alwayson)]
def init_field(title):
if title == 'None':
return
script_index = self.titles.index(title)
- script = self.scripts[script_index]
+ script = self.selectable_scripts[script_index]
for i in range(script.args_from, script.args_to):
inputs[i].visible = True
@@ -164,7 +273,7 @@ class ScriptRunner:
if script_index == 0:
return None
- script = self.scripts[script_index-1]
+ script = self.selectable_scripts[script_index-1]
if script is None:
return None
@@ -176,7 +285,25 @@ class ScriptRunner:
return processed
- def reload_sources(self):
+ def process(self, p):
+ for script in self.alwayson_scripts:
+ try:
+ script_args = p.script_args[script.args_from:script.args_to]
+ script.process(p, *script_args)
+ except Exception:
+ print(f"Error running process: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ def postprocess(self, p, processed):
+ for script in self.alwayson_scripts:
+ try:
+ script_args = p.script_args[script.args_from:script.args_to]
+ script.postprocess(p, processed, *script_args)
+ except Exception:
+ print(f"Error running postprocess: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)):
with open(script.filename, "r", encoding="utf8") as file:
args_from = script.args_from
@@ -186,9 +313,12 @@ class ScriptRunner:
from types import ModuleType
- compiled = compile(text, filename, 'exec')
- module = ModuleType(script.filename)
- exec(compiled, module.__dict__)
+ module = cache.get(filename, None)
+ if module is None:
+ compiled = compile(text, filename, 'exec')
+ module = ModuleType(script.filename)
+ exec(compiled, module.__dict__)
+ cache[filename] = module
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
@@ -197,19 +327,22 @@ class ScriptRunner:
self.scripts[si].args_from = args_from
self.scripts[si].args_to = args_to
+
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
def reload_script_body_only():
- scripts_txt2img.reload_sources()
- scripts_img2img.reload_sources()
+ cache = {}
+ scripts_txt2img.reload_sources(cache)
+ scripts_img2img.reload_sources(cache)
-def reload_scripts(basedir):
+def reload_scripts():
global scripts_txt2img, scripts_img2img
- scripts_data.clear()
- load_scripts(basedir)
+ load_scripts()
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
diff --git a/modules/scunet_model.py b/modules/scunet_model.py
index 36a996bf..59532274 100644
--- a/modules/scunet_model.py
+++ b/modules/scunet_model.py
@@ -54,9 +54,8 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
- img = img.unsqueeze(0).to(device)
+ img = devices.mps_contiguous_to(img.unsqueeze(0), device)
- img = img.to(device)
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 1f8587d1..0f10828e 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -332,7 +332,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
multipliers.append([1.0] * 75)
z1 = self.process_tokens(tokens, multipliers)
- z1 = shared.aesthetic_clip(z1, remade_batch_tokens)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
remade_batch_tokens = rem_tokens
diff --git a/modules/sd_models.py b/modules/sd_models.py
index d99dbce8..f86dc3ed 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -3,11 +3,12 @@ import os.path
import sys
from collections import namedtuple
import torch
+import re
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
-from modules import shared, modelloader, devices
+from modules import shared, modelloader, devices, script_callbacks
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
@@ -35,8 +36,10 @@ def setup_model():
list_models()
-def checkpoint_tiles():
- return sorted([x.title for x in checkpoints_list.values()])
+def checkpoint_tiles():
+ convert = lambda name: int(name) if name.isdigit() else name.lower()
+ alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
+ return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key)
def list_models():
@@ -170,7 +173,9 @@ def load_model_weights(model, checkpoint_info):
print(f"Global Step: {pl_sd['global_step']}")
sd = get_state_dict_from_checkpoint(pl_sd)
- missing, extra = model.load_state_dict(sd, strict=False)
+ del pl_sd
+ model.load_state_dict(sd, strict=False)
+ del sd
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
@@ -194,9 +199,10 @@ def load_model_weights(model, checkpoint_info):
model.first_stage_model.to(devices.dtype_vae)
- checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
- while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
- checkpoints_loaded.popitem(last=False) # LRU
+ if shared.opts.sd_checkpoint_cache > 0:
+ checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
+ while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
+ checkpoints_loaded.popitem(last=False) # LRU
else:
print(f"Loading weights [{sd_model_hash}] from cache")
checkpoints_loaded.move_to_end(checkpoint_info)
@@ -238,6 +244,9 @@ def load_model(checkpoint_info=None):
sd_hijack.model_hijack.hijack(sd_model)
sd_model.eval()
+ shared.sd_model = sd_model
+
+ script_callbacks.model_loaded_callback(sd_model)
print(f"Model loaded.")
return sd_model
@@ -252,7 +261,7 @@ def reload_model_weights(sd_model, info=None):
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
checkpoints_loaded.clear()
- shared.sd_model = load_model(checkpoint_info)
+ load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
@@ -265,6 +274,7 @@ def reload_model_weights(sd_model, info=None):
load_model_weights(sd_model, checkpoint_info)
sd_hijack.model_hijack.hijack(sd_model)
+ script_callbacks.model_loaded_callback(sd_model)
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index f58a29b9..3670b57d 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -7,7 +7,7 @@ import inspect
import k_diffusion.sampling
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
-from modules import prompt_parser, devices, processing
+from modules import prompt_parser, devices, processing, images
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@@ -71,6 +71,7 @@ sampler_extra_params = {
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}
+
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
@@ -82,14 +83,22 @@ def setup_img2img_steps(p, steps=None):
return steps, t_enc
-def sample_to_image(samples):
- x_sample = processing.decode_first_stage(shared.sd_model, samples[0:1])[0]
+def single_sample_to_image(sample):
+ x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
+def sample_to_image(samples):
+ return single_sample_to_image(samples[0])
+
+
+def samples_to_image_grid(samples):
+ return images.image_grid([single_sample_to_image(sample) for sample in samples])
+
+
def store_latent(decoded):
state.current_latent = decoded
@@ -219,7 +228,7 @@ class VanillaStableDiffusionSampler:
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
- samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
+ samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples
@@ -420,7 +429,7 @@ class KDiffusionSampler:
self.model_wrap_cfg.init_latent = x
self.last_latent = x
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
+ samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
diff --git a/modules/shared.py b/modules/shared.py
index ab5a0e9a..01c2942b 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -31,7 +31,6 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
-parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(models_path, 'aesthetic_embeddings'), help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
@@ -41,7 +40,7 @@ parser.add_argument("--lowram", action='store_true', help="load stable diffusion
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
-parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
+parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
@@ -59,12 +58,13 @@ parser.add_argument("--opt-split-attention", action='store_true', help="force-en
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
-parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
+parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json'))
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
+parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
@@ -80,10 +80,14 @@ parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencode
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
+parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
+parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
+parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
cmd_opts = parser.parse_args()
-restricted_opts = [
+restricted_opts = {
"samples_filename_pattern",
+ "directories_filename_pattern",
"outdir_samples",
"outdir_txt2img_samples",
"outdir_img2img_samples",
@@ -91,10 +95,12 @@ restricted_opts = [
"outdir_grids",
"outdir_txt2img_grids",
"outdir_save",
-]
+}
-devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_bsrgan, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
-(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'])
+cmd_opts.disable_extension_access = cmd_opts.share or cmd_opts.listen
+
+devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_swinir, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
+(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'])
device = devices.device
weight_load_location = None if cmd_opts.lowram else "cpu"
@@ -108,21 +114,6 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
-
-os.makedirs(cmd_opts.aesthetic_embeddings_dir, exist_ok=True)
-aesthetic_embeddings = {}
-
-
-def update_aesthetic_embeddings():
- global aesthetic_embeddings
- aesthetic_embeddings = {f.replace(".pt", ""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
- os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
- aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings)
-
-
-update_aesthetic_embeddings()
-
-
def reload_hypernetworks():
global hypernetworks
@@ -143,6 +134,7 @@ class State:
current_image = None
current_image_sampling_step = 0
textinfo = None
+ need_restart = False
def skip(self):
self.skipped = True
@@ -155,9 +147,38 @@ class State:
self.sampling_step = 0
self.current_image_sampling_step = 0
- def get_job_timestamp(self):
- return datetime.datetime.now().strftime("%Y%m%d%H%M%S") # shouldn't this return job_timestamp?
+ def dict(self):
+ obj = {
+ "skipped": self.skipped,
+ "interrupted": self.skipped,
+ "job": self.job,
+ "job_count": self.job_count,
+ "job_no": self.job_no,
+ "sampling_step": self.sampling_step,
+ "sampling_steps": self.sampling_steps,
+ }
+
+ return obj
+
+ def begin(self):
+ self.sampling_step = 0
+ self.job_count = -1
+ self.job_no = 0
+ self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
+ self.current_latent = None
+ self.current_image = None
+ self.current_image_sampling_step = 0
+ self.skipped = False
+ self.interrupted = False
+ self.textinfo = None
+
+ devices.torch_gc()
+
+ def end(self):
+ self.job = ""
+ self.job_count = 0
+ devices.torch_gc()
state = State()
@@ -179,13 +200,13 @@ def realesrgan_models_names():
class OptionInfo:
- def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, show_on_main_page=False, refresh=None):
+ def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None):
self.default = default
self.label = label
self.component = component
self.component_args = component_args
self.onchange = onchange
- self.section = None
+ self.section = section
self.refresh = refresh
@@ -203,7 +224,8 @@ options_templates = {}
options_templates.update(options_section(('saving-images', "Saving images/grids"), {
"samples_save": OptionInfo(True, "Always save all generated images"),
"samples_format": OptionInfo('png', 'File format for images'),
- "samples_filename_pattern": OptionInfo("", "Images filename pattern"),
+ "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs),
+ "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
"grid_save": OptionInfo(True, "Always save all generated image grids"),
"grid_format": OptionInfo('png', 'File format for grids'),
@@ -238,8 +260,8 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo
"save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
"grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"),
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
- "directories_filename_pattern": OptionInfo("", "Directory name pattern"),
- "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1}),
+ "directories_filename_pattern": OptionInfo("", "Directory name pattern", component_args=hide_dirs),
+ "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
}))
options_templates.update(options_section(('upscaling', "Upscaling"), {
@@ -278,6 +300,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
+ "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
@@ -308,11 +331,13 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
options_templates.update(options_section(('ui', "User interface"), {
"show_progressbar": OptionInfo(True, "Show progressbar"),
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
+ "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
"return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
"add_model_name_to_info": OptionInfo(False, "Add model name to generation information"),
"disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
+ "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
@@ -333,6 +358,12 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
}))
+options_templates.update(options_section((None, "Hidden options"), {
+ "disabled_extensions": OptionInfo([], "Disable those extensions"),
+}))
+
+options_templates.update()
+
class Options:
data = None
@@ -344,8 +375,9 @@ class Options:
def __setattr__(self, key, value):
if self.data is not None:
- if key in self.data:
+ if key in self.data or key in self.data_labels:
self.data[key] = value
+ return
return super(Options, self).__setattr__(key, value)
@@ -361,7 +393,7 @@ class Options:
def save(self, filename):
with open(filename, "w", encoding="utf8") as file:
- json.dump(self.data, file)
+ json.dump(self.data, file, indent=4)
def same_type(self, x, y):
if x is None or y is None:
@@ -396,6 +428,20 @@ class Options:
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
return json.dumps(d)
+ def add_option(self, key, info):
+ self.data_labels[key] = info
+
+ def reorder(self):
+ """reorder settings so that all items related to section always go together"""
+
+ section_ids = {}
+ settings_items = self.data_labels.items()
+ for k, item in settings_items:
+ if item.section not in section_ids:
+ section_ids[item.section] = len(section_ids)
+
+ self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])}
+
opts = Options()
if os.path.exists(config_filename):
@@ -407,9 +453,6 @@ sd_model = None
clip_model = None
-from modules.aesthetic_clip import AestheticCLIP
-aesthetic_clip = AestheticCLIP()
-
progress_print_out = sys.stdout
@@ -449,3 +492,8 @@ total_tqdm = TotalTQDM()
mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
mem_mon.start()
+
+
+def listfiles(dirname):
+ filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname)) if not x.startswith(".")]
+ return [file for file in filenames if os.path.isfile(file)]
diff --git a/modules/swinir_model.py b/modules/swinir_model.py
index baa02e3d..4253b66d 100644
--- a/modules/swinir_model.py
+++ b/modules/swinir_model.py
@@ -7,8 +7,8 @@ from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm
-from modules import modelloader
-from modules.shared import cmd_opts, opts, device
+from modules import modelloader, devices
+from modules.shared import cmd_opts, opts
from modules.swinir_model_arch import SwinIR as net
from modules.swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData
@@ -42,7 +42,7 @@ class UpscalerSwinIR(Upscaler):
model = self.load_model(model_file)
if model is None:
return img
- model = model.to(device)
+ model = model.to(devices.device_swinir)
img = upscale(img, model)
try:
torch.cuda.empty_cache()
@@ -111,7 +111,7 @@ def upscale(
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
- img = img.unsqueeze(0).to(device)
+ img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_swinir)
with torch.no_grad(), precision_scope("cuda"):
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
@@ -139,8 +139,8 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
- E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
- W = torch.zeros_like(E, dtype=torch.half, device=device)
+ E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=devices.device_swinir).type_as(img)
+ W = torch.zeros_like(E, dtype=torch.half, device=devices.device_swinir)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
for h_idx in h_idx_list:
diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py
new file mode 100644
index 00000000..9859974a
--- /dev/null
+++ b/modules/textual_inversion/autocrop.py
@@ -0,0 +1,341 @@
+import cv2
+import requests
+import os
+from collections import defaultdict
+from math import log, sqrt
+import numpy as np
+from PIL import Image, ImageDraw
+
+GREEN = "#0F0"
+BLUE = "#00F"
+RED = "#F00"
+
+
+def crop_image(im, settings):
+ """ Intelligently crop an image to the subject matter """
+
+ scale_by = 1
+ if is_landscape(im.width, im.height):
+ scale_by = settings.crop_height / im.height
+ elif is_portrait(im.width, im.height):
+ scale_by = settings.crop_width / im.width
+ elif is_square(im.width, im.height):
+ if is_square(settings.crop_width, settings.crop_height):
+ scale_by = settings.crop_width / im.width
+ elif is_landscape(settings.crop_width, settings.crop_height):
+ scale_by = settings.crop_width / im.width
+ elif is_portrait(settings.crop_width, settings.crop_height):
+ scale_by = settings.crop_height / im.height
+
+ im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
+ im_debug = im.copy()
+
+ focus = focal_point(im_debug, settings)
+
+ # take the focal point and turn it into crop coordinates that try to center over the focal
+ # point but then get adjusted back into the frame
+ y_half = int(settings.crop_height / 2)
+ x_half = int(settings.crop_width / 2)
+
+ x1 = focus.x - x_half
+ if x1 < 0:
+ x1 = 0
+ elif x1 + settings.crop_width > im.width:
+ x1 = im.width - settings.crop_width
+
+ y1 = focus.y - y_half
+ if y1 < 0:
+ y1 = 0
+ elif y1 + settings.crop_height > im.height:
+ y1 = im.height - settings.crop_height
+
+ x2 = x1 + settings.crop_width
+ y2 = y1 + settings.crop_height
+
+ crop = [x1, y1, x2, y2]
+
+ results = []
+
+ results.append(im.crop(tuple(crop)))
+
+ if settings.annotate_image:
+ d = ImageDraw.Draw(im_debug)
+ rect = list(crop)
+ rect[2] -= 1
+ rect[3] -= 1
+ d.rectangle(rect, outline=GREEN)
+ results.append(im_debug)
+ if settings.destop_view_image:
+ im_debug.show()
+
+ return results
+
+def focal_point(im, settings):
+ corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
+ entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
+ face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
+
+ pois = []
+
+ weight_pref_total = 0
+ if len(corner_points) > 0:
+ weight_pref_total += settings.corner_points_weight
+ if len(entropy_points) > 0:
+ weight_pref_total += settings.entropy_points_weight
+ if len(face_points) > 0:
+ weight_pref_total += settings.face_points_weight
+
+ corner_centroid = None
+ if len(corner_points) > 0:
+ corner_centroid = centroid(corner_points)
+ corner_centroid.weight = settings.corner_points_weight / weight_pref_total
+ pois.append(corner_centroid)
+
+ entropy_centroid = None
+ if len(entropy_points) > 0:
+ entropy_centroid = centroid(entropy_points)
+ entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
+ pois.append(entropy_centroid)
+
+ face_centroid = None
+ if len(face_points) > 0:
+ face_centroid = centroid(face_points)
+ face_centroid.weight = settings.face_points_weight / weight_pref_total
+ pois.append(face_centroid)
+
+ average_point = poi_average(pois, settings)
+
+ if settings.annotate_image:
+ d = ImageDraw.Draw(im)
+ max_size = min(im.width, im.height) * 0.07
+ if corner_centroid is not None:
+ color = BLUE
+ box = corner_centroid.bounding(max_size * corner_centroid.weight)
+ d.text((box[0], box[1]-15), "Edge: %.02f" % corner_centroid.weight, fill=color)
+ d.ellipse(box, outline=color)
+ if len(corner_points) > 1:
+ for f in corner_points:
+ d.rectangle(f.bounding(4), outline=color)
+ if entropy_centroid is not None:
+ color = "#ff0"
+ box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
+ d.text((box[0], box[1]-15), "Entropy: %.02f" % entropy_centroid.weight, fill=color)
+ d.ellipse(box, outline=color)
+ if len(entropy_points) > 1:
+ for f in entropy_points:
+ d.rectangle(f.bounding(4), outline=color)
+ if face_centroid is not None:
+ color = RED
+ box = face_centroid.bounding(max_size * face_centroid.weight)
+ d.text((box[0], box[1]-15), "Face: %.02f" % face_centroid.weight, fill=color)
+ d.ellipse(box, outline=color)
+ if len(face_points) > 1:
+ for f in face_points:
+ d.rectangle(f.bounding(4), outline=color)
+
+ d.ellipse(average_point.bounding(max_size), outline=GREEN)
+
+ return average_point
+
+
+def image_face_points(im, settings):
+ if settings.dnn_model_path is not None:
+ detector = cv2.FaceDetectorYN.create(
+ settings.dnn_model_path,
+ "",
+ (im.width, im.height),
+ 0.9, # score threshold
+ 0.3, # nms threshold
+ 5000 # keep top k before nms
+ )
+ faces = detector.detect(np.array(im))
+ results = []
+ if faces[1] is not None:
+ for face in faces[1]:
+ x = face[0]
+ y = face[1]
+ w = face[2]
+ h = face[3]
+ results.append(
+ PointOfInterest(
+ int(x + (w * 0.5)), # face focus left/right is center
+ int(y + (h * 0.33)), # face focus up/down is close to the top of the head
+ size = w,
+ weight = 1/len(faces[1])
+ )
+ )
+ return results
+ else:
+ np_im = np.array(im)
+ gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
+
+ tries = [
+ [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
+ [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
+ [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
+ ]
+ for t in tries:
+ classifier = cv2.CascadeClassifier(t[0])
+ minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
+ try:
+ faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
+ minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
+ except:
+ continue
+
+ if len(faces) > 0:
+ rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
+ return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
+ return []
+
+
+def image_corner_points(im, settings):
+ grayscale = im.convert("L")
+
+ # naive attempt at preventing focal points from collecting at watermarks near the bottom
+ gd = ImageDraw.Draw(grayscale)
+ gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
+
+ np_im = np.array(grayscale)
+
+ points = cv2.goodFeaturesToTrack(
+ np_im,
+ maxCorners=100,
+ qualityLevel=0.04,
+ minDistance=min(grayscale.width, grayscale.height)*0.06,
+ useHarrisDetector=False,
+ )
+
+ if points is None:
+ return []
+
+ focal_points = []
+ for point in points:
+ x, y = point.ravel()
+ focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
+
+ return focal_points
+
+
+def image_entropy_points(im, settings):
+ landscape = im.height < im.width
+ portrait = im.height > im.width
+ if landscape:
+ move_idx = [0, 2]
+ move_max = im.size[0]
+ elif portrait:
+ move_idx = [1, 3]
+ move_max = im.size[1]
+ else:
+ return []
+
+ e_max = 0
+ crop_current = [0, 0, settings.crop_width, settings.crop_height]
+ crop_best = crop_current
+ while crop_current[move_idx[1]] < move_max:
+ crop = im.crop(tuple(crop_current))
+ e = image_entropy(crop)
+
+ if (e > e_max):
+ e_max = e
+ crop_best = list(crop_current)
+
+ crop_current[move_idx[0]] += 4
+ crop_current[move_idx[1]] += 4
+
+ x_mid = int(crop_best[0] + settings.crop_width/2)
+ y_mid = int(crop_best[1] + settings.crop_height/2)
+
+ return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
+
+
+def image_entropy(im):
+ # greyscale image entropy
+ # band = np.asarray(im.convert("L"))
+ band = np.asarray(im.convert("1"), dtype=np.uint8)
+ hist, _ = np.histogram(band, bins=range(0, 256))
+ hist = hist[hist > 0]
+ return -np.log2(hist / hist.sum()).sum()
+
+def centroid(pois):
+ x = [poi.x for poi in pois]
+ y = [poi.y for poi in pois]
+ return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))
+
+
+def poi_average(pois, settings):
+ weight = 0.0
+ x = 0.0
+ y = 0.0
+ for poi in pois:
+ weight += poi.weight
+ x += poi.x * poi.weight
+ y += poi.y * poi.weight
+ avg_x = round(x / weight)
+ avg_y = round(y / weight)
+
+ return PointOfInterest(avg_x, avg_y)
+
+
+def is_landscape(w, h):
+ return w > h
+
+
+def is_portrait(w, h):
+ return h > w
+
+
+def is_square(w, h):
+ return w == h
+
+
+def download_and_cache_models(dirname):
+ download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
+ model_file_name = 'face_detection_yunet.onnx'
+
+ if not os.path.exists(dirname):
+ os.makedirs(dirname)
+
+ cache_file = os.path.join(dirname, model_file_name)
+ if not os.path.exists(cache_file):
+ print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
+ response = requests.get(download_url)
+ with open(cache_file, "wb") as f:
+ f.write(response.content)
+
+ if os.path.exists(cache_file):
+ return cache_file
+ return None
+
+
+class PointOfInterest:
+ def __init__(self, x, y, weight=1.0, size=10):
+ self.x = x
+ self.y = y
+ self.weight = weight
+ self.size = size
+
+ def bounding(self, size):
+ return [
+ self.x - size//2,
+ self.y - size//2,
+ self.x + size//2,
+ self.y + size//2
+ ]
+
+
+class Settings:
+ def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None):
+ self.crop_width = crop_width
+ self.crop_height = crop_height
+ self.corner_points_weight = corner_points_weight
+ self.entropy_points_weight = entropy_points_weight
+ self.face_points_weight = face_points_weight
+ self.annotate_image = annotate_image
+ self.destop_view_image = False
+ self.dnn_model_path = dnn_model_path \ No newline at end of file
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 5b1c5002..ad726577 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -42,6 +42,8 @@ class PersonalizedBase(Dataset):
self.lines = lines
assert data_root, 'dataset directory not specified'
+ assert os.path.isdir(data_root), "Dataset directory doesn't exist"
+ assert os.listdir(data_root), "Dataset directory is empty"
cond_model = shared.sd_model.cond_stage_model
@@ -86,12 +88,12 @@ class PersonalizedBase(Dataset):
assert len(self.dataset) > 0, "No images have been found in the dataset."
self.length = len(self.dataset) * repeats // batch_size
- self.initial_indexes = np.arange(len(self.dataset))
+ self.dataset_length = len(self.dataset)
self.indexes = None
self.shuffle()
def shuffle(self):
- self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0]).numpy()]
+ self.indexes = np.random.permutation(self.dataset_length)
def create_text(self, filename_text):
text = random.choice(self.lines)
diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py
index 2062726a..dd0c0ad1 100644
--- a/modules/textual_inversion/learn_schedule.py
+++ b/modules/textual_inversion/learn_schedule.py
@@ -4,30 +4,37 @@ import tqdm
class LearnScheduleIterator:
def __init__(self, learn_rate, max_steps, cur_step=0):
"""
- specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, 1e-5:10000 until 10000
+ specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000
"""
pairs = learn_rate.split(',')
self.rates = []
self.it = 0
self.maxit = 0
- for i, pair in enumerate(pairs):
- tmp = pair.split(':')
- if len(tmp) == 2:
- step = int(tmp[1])
- if step > cur_step:
- self.rates.append((float(tmp[0]), min(step, max_steps)))
- self.maxit += 1
- if step > max_steps:
+ try:
+ for i, pair in enumerate(pairs):
+ if not pair.strip():
+ continue
+ tmp = pair.split(':')
+ if len(tmp) == 2:
+ step = int(tmp[1])
+ if step > cur_step:
+ self.rates.append((float(tmp[0]), min(step, max_steps)))
+ self.maxit += 1
+ if step > max_steps:
+ return
+ elif step == -1:
+ self.rates.append((float(tmp[0]), max_steps))
+ self.maxit += 1
return
- elif step == -1:
+ else:
self.rates.append((float(tmp[0]), max_steps))
self.maxit += 1
return
- else:
- self.rates.append((float(tmp[0]), max_steps))
- self.maxit += 1
- return
+ assert self.rates
+ except (ValueError, AssertionError):
+ raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.')
+
def __iter__(self):
return self
@@ -52,7 +59,7 @@ class LearnRateScheduler:
self.finished = False
def apply(self, optimizer, step_number):
- if step_number <= self.end_step:
+ if step_number < self.end_step:
return
try:
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 33eaddb6..e13b1894 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -7,12 +7,14 @@ import tqdm
import time
from modules import shared, images
+from modules.paths import models_path
from modules.shared import opts, cmd_opts
+from modules.textual_inversion import autocrop
if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
-def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
+def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False):
try:
if process_caption:
shared.interrogator.load()
@@ -22,7 +24,7 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
- preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio)
+ preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug)
finally:
@@ -34,7 +36,7 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce
-def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
+def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False):
width = process_width
height = process_height
src = os.path.abspath(process_src)
@@ -113,6 +115,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
splitted = image.crop((0, y, to_w, y + to_h))
yield splitted
+
for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0]
filename = os.path.join(src, imagefile)
@@ -137,11 +140,36 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
ratio = (img.height * width) / (img.width * height)
inverse_xy = True
+ process_default_resize = True
+
if process_split and ratio < 1.0 and ratio <= split_threshold:
for splitted in split_pic(img, inverse_xy):
save_pic(splitted, index, existing_caption=existing_caption)
- else:
+ process_default_resize = False
+
+ if process_focal_crop and img.height != img.width:
+
+ dnn_model_path = None
+ try:
+ dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv"))
+ except Exception as e:
+ print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)
+
+ autocrop_settings = autocrop.Settings(
+ crop_width = width,
+ crop_height = height,
+ face_points_weight = process_focal_crop_face_weight,
+ entropy_points_weight = process_focal_crop_entropy_weight,
+ corner_points_weight = process_focal_crop_edges_weight,
+ annotate_image = process_focal_crop_debug,
+ dnn_model_path = dnn_model_path,
+ )
+ for focal in autocrop.crop_image(img, autocrop_settings):
+ save_pic(focal, index, existing_caption=existing_caption)
+ process_default_resize = False
+
+ if process_default_resize:
img = images.resize_image(1, img, width, height)
save_pic(img, index, existing_caption=existing_caption)
- shared.state.nextjob()
+ shared.state.nextjob() \ No newline at end of file
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 529ed3e2..e0babb46 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -10,7 +10,7 @@ import csv
from PIL import Image, PngImagePlugin
-from modules import shared, devices, sd_hijack, processing, sd_models
+from modules import shared, devices, sd_hijack, processing, sd_models, images
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@@ -119,7 +119,7 @@ class EmbeddingDatabase:
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
- embedding.sd_checkpoint = data.get('hash', None)
+ embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
self.register_embedding(embedding, shared.sd_model)
@@ -157,6 +157,9 @@ def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
cond_model = shared.sd_model.cond_stage_model
embedding_layer = cond_model.wrapped.transformer.text_model.embeddings
+ with devices.autocast():
+ cond_model([""]) # will send cond model to GPU if lowvram/medvram is active
+
ids = cond_model.tokenizer(init_text, max_length=num_vectors_per_token, return_tensors="pt", add_special_tokens=False)["input_ids"]
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
@@ -164,6 +167,8 @@ def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
for i in range(num_vectors_per_token):
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
+ # Remove illegal characters from name.
+ name = "".join( x for x in name if (x.isalnum() or x in "._- "))
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
@@ -179,9 +184,8 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if shared.opts.training_write_csv_every == 0:
return
- if step % shared.opts.training_write_csv_every != 0:
+ if (step + 1) % shared.opts.training_write_csv_every != 0:
return
-
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
@@ -191,18 +195,39 @@ def write_loss(log_directory, filename, step, epoch_len, values):
csv_writer.writeheader()
epoch = step // epoch_len
- epoch_step = step - epoch * epoch_len
+ epoch_step = step % epoch_len
csv_writer.writerow({
"step": step + 1,
- "epoch": epoch + 1,
+ "epoch": epoch,
"epoch_step": epoch_step + 1,
**values,
})
+def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
+ assert model_name, f"{name} not selected"
+ assert learn_rate, "Learning rate is empty or 0"
+ assert isinstance(batch_size, int), "Batch size must be integer"
+ assert batch_size > 0, "Batch size must be positive"
+ assert data_root, "Dataset directory is empty"
+ assert os.path.isdir(data_root), "Dataset directory doesn't exist"
+ assert os.listdir(data_root), "Dataset directory is empty"
+ assert template_file, "Prompt template file is empty"
+ assert os.path.isfile(template_file), "Prompt template file doesn't exist"
+ assert steps, "Max steps is empty or 0"
+ assert isinstance(steps, int), "Max steps must be integer"
+ assert steps > 0 , "Max steps must be positive"
+ assert isinstance(save_model_every, int), "Save {name} must be integer"
+ assert save_model_every >= 0 , "Save {name} must be positive or 0"
+ assert isinstance(create_image_every, int), "Create image must be integer"
+ assert create_image_every >= 0 , "Create image must be positive or 0"
+ if save_model_every or create_image_every:
+ assert log_directory, "Log directory is empty"
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
- assert embedding_name, 'embedding not selected'
+ save_embedding_every = save_embedding_every or 0
+ create_image_every = create_image_every or 0
+ validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
@@ -228,31 +253,36 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
os.makedirs(images_embeds_dir, exist_ok=True)
else:
images_embeds_dir = None
-
+
cond_model = shared.sd_model.cond_stage_model
+ hijack = sd_hijack.model_hijack
+
+ embedding = hijack.embedding_db.word_embeddings[embedding_name]
+ checkpoint = sd_models.select_checkpoint()
+
+ ititial_step = embedding.step or 0
+ if ititial_step >= steps:
+ shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ return embedding, filename
+
+ scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+
+ # dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
- hijack = sd_hijack.model_hijack
-
- embedding = hijack.embedding_db.word_embeddings[embedding_name]
embedding.vec.requires_grad = True
+ optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
losses = torch.zeros((32,))
last_saved_file = "<none>"
last_saved_image = "<none>"
+ forced_filename = "<none>"
embedding_yet_to_be_embedded = False
- ititial_step = embedding.step or 0
- if ititial_step > steps:
- return embedding, filename
-
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
-
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, entries in pbar:
embedding.step = i + ititial_step
@@ -276,15 +306,18 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
loss.backward()
optimizer.step()
+ steps_done = embedding.step + 1
epoch_num = embedding.step // len(ds)
- epoch_step = embedding.step - (epoch_num * len(ds)) + 1
+ epoch_step = embedding.step % len(ds)
- pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}")
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
- if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
- last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
- embedding.save(last_saved_file)
+ if embedding_dir is not None and steps_done % save_embedding_every == 0:
+ # Before saving, change name to match current checkpoint.
+ embedding_name_every = f'{embedding_name}-{steps_done}'
+ last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
+ save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
@@ -292,9 +325,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
"learn_rate": scheduler.learn_rate
})
- if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
- last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
-
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{embedding_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
@@ -326,7 +359,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
- last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
+ last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
info = PngImagePlugin.PngInfo()
data = torch.load(last_saved_file)
@@ -342,7 +375,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
footer_mid = '[{}]'.format(checkpoint.hash)
- footer_right = '{}v {}s'.format(vectorSize, embedding.step)
+ footer_right = '{}v {}s'.format(vectorSize, steps_done)
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
captioned_image = insert_image_data_embed(captioned_image, data)
@@ -350,8 +383,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
embedding_yet_to_be_embedded = False
- image.save(last_saved_image)
-
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = embedding.step
@@ -366,11 +398,26 @@ Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
- checkpoint = sd_models.select_checkpoint()
-
- embedding.sd_checkpoint = checkpoint.hash
- embedding.sd_checkpoint_name = checkpoint.model_name
- embedding.cached_checksum = None
- embedding.save(filename)
+ filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
+ save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
return embedding, filename
+
+def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True):
+ old_embedding_name = embedding.name
+ old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
+ old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
+ old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
+ try:
+ embedding.sd_checkpoint = checkpoint.hash
+ embedding.sd_checkpoint_name = checkpoint.model_name
+ if remove_cached_checksum:
+ embedding.cached_checksum = None
+ embedding.name = embedding_name
+ embedding.save(filename)
+ except:
+ embedding.sd_checkpoint = old_sd_checkpoint
+ embedding.sd_checkpoint_name = old_sd_checkpoint_name
+ embedding.name = old_embedding_name
+ embedding.cached_checksum = old_cached_checksum
+ raise
diff --git a/modules/txt2img.py b/modules/txt2img.py
index 1761cfa2..c9d5a090 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -7,7 +7,7 @@ import modules.processing as processing
from modules.ui import plaintext_to_html
-def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
+def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@@ -36,7 +36,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
firstphase_height=firstphase_height if enable_hr else None,
)
- shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
+ p.scripts = modules.scripts.scripts_txt2img
+ p.script_args = args
if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/ui.py b/modules/ui.py
index e58f040e..447722cd 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1,58 +1,53 @@
-import base64
import html
-import io
import json
import math
import mimetypes
import os
+import platform
import random
+import subprocess as sp
import sys
import tempfile
import time
import traceback
-import platform
-import subprocess as sp
from functools import partial, reduce
+import gradio as gr
+import gradio.routes
+import gradio.utils
import numpy as np
-import torch
from PIL import Image, PngImagePlugin
-import piexif
-import gradio as gr
-import gradio.utils
-import gradio.routes
-from modules import sd_hijack, sd_models, localization
+from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions
from modules.paths import script_path
-from modules.shared import opts, cmd_opts, restricted_opts, aesthetic_embeddings
+from modules.shared import opts, cmd_opts, restricted_opts
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
-import modules.shared as shared
-from modules.sd_samplers import samplers, samplers_for_img2img
-from modules.sd_hijack import model_hijack
+
+import modules.codeformer_model
+import modules.generation_parameters_copypaste as parameters_copypaste
+import modules.gfpgan_model
+import modules.hypernetworks.ui
import modules.ldsr_model
import modules.scripts
-import modules.gfpgan_model
-import modules.codeformer_model
+import modules.shared as shared
import modules.styles
-import modules.generation_parameters_copypaste
+import modules.textual_inversion.ui
from modules import prompt_parser
from modules.images import save_image
+from modules.sd_hijack import model_hijack
+from modules.sd_samplers import samplers, samplers_for_img2img
import modules.textual_inversion.ui
import modules.hypernetworks.ui
-
-import modules.aesthetic_clip as aesthetic_clip
-import modules.images_history as img_his
-
+from modules.generation_parameters_copypaste import image_from_url_text
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
mimetypes.add_type('application/javascript', '.js')
-
if not cmd_opts.share and not cmd_opts.listen:
# fix gradio phoning home
gradio.utils.version_check = lambda: None
@@ -95,37 +90,11 @@ def plaintext_to_html(text):
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
return text
-
-def image_from_url_text(filedata):
- if type(filedata) == dict and filedata["is_file"]:
- filename = filedata["name"]
- tempdir = os.path.normpath(tempfile.gettempdir())
- normfn = os.path.normpath(filename)
- assert normfn.startswith(tempdir), 'trying to open image file not in temporary directory'
-
- return Image.open(filename)
-
- if type(filedata) == list:
- if len(filedata) == 0:
- return None
-
- filedata = filedata[0]
-
- if filedata.startswith("data:image/png;base64,"):
- filedata = filedata[len("data:image/png;base64,"):]
-
- filedata = base64.decodebytes(filedata.encode('utf-8'))
- image = Image.open(io.BytesIO(filedata))
- return image
-
-
def send_gradio_gallery_to_image(x):
if len(x) == 0:
return None
-
return image_from_url_text(x[0])
-
def save_files(js_data, images, do_make_zip, index):
import csv
filenames = []
@@ -189,7 +158,6 @@ def save_files(js_data, images, do_make_zip, index):
return gr.File.update(value=fullfns, visible=True), '', '', plaintext_to_html(f"Saved: {filenames[0]}")
-
def save_pil_to_file(pil_image, dir=None):
use_metadata = False
metadata = PngImagePlugin.PngInfo()
@@ -313,7 +281,10 @@ def check_progress_call(id_part):
if shared.parallel_processing_allowed:
if shared.state.sampling_step - shared.state.current_image_sampling_step >= opts.show_progress_every_n_steps and shared.state.current_latent is not None:
- shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent)
+ if opts.show_progress_grid:
+ shared.state.current_image = modules.sd_samplers.samples_to_image_grid(shared.state.current_latent)
+ else:
+ shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent)
shared.state.current_image_sampling_step = shared.state.sampling_step
image = shared.state.current_image
@@ -596,6 +567,9 @@ def apply_setting(key, value):
if value is None:
return gr.update()
+ if shared.cmd_opts.freeze_settings:
+ return gr.update()
+
# dont allow model to be swapped when model hash exists in prompt
if key == "sd_model_checkpoint" and opts.disable_weights_auto_swap:
return gr.update()
@@ -641,10 +615,88 @@ def create_refresh_button(refresh_component, refresh_method, refreshed_args, ele
return refresh_button
+def create_output_panel(tabname, outdir):
+ def open_folder(f):
+ if not os.path.exists(f):
+ print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
+ return
+ elif not os.path.isdir(f):
+ print(f"""
+WARNING
+An open_folder request was made with an argument that is not a folder.
+This could be an error or a malicious attempt to run code on your computer.
+Requested path was: {f}
+""", file=sys.stderr)
+ return
+
+ if not shared.cmd_opts.hide_ui_dir_config:
+ path = os.path.normpath(f)
+ if platform.system() == "Windows":
+ os.startfile(path)
+ elif platform.system() == "Darwin":
+ sp.Popen(["open", path])
+ else:
+ sp.Popen(["xdg-open", path])
+
+ with gr.Column(variant='panel'):
+ with gr.Group():
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
+
+ generation_info = None
+ with gr.Column():
+ with gr.Row():
+ if tabname != "extras":
+ save = gr.Button('Save', elem_id=f'save_{tabname}')
+
+ buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
+ button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
+ open_folder_button = gr.Button(folder_symbol, elem_id=button_id)
+
+ open_folder_button.click(
+ fn=lambda: open_folder(opts.outdir_samples or outdir),
+ inputs=[],
+ outputs=[],
+ )
+
+ if tabname != "extras":
+ with gr.Row():
+ do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
+
+ with gr.Row():
+ download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
+
+ with gr.Group():
+ html_info = gr.HTML()
+ generation_info = gr.Textbox(visible=False)
+
+ save.click(
+ fn=wrap_gradio_call(save_files),
+ _js="(x, y, z, w) => [x, y, z, selected_gallery_index()]",
+ inputs=[
+ generation_info,
+ result_gallery,
+ do_make_zip,
+ html_info,
+ ],
+ outputs=[
+ download_files,
+ html_info,
+ html_info,
+ html_info,
+ ]
+ )
+ else:
+ html_info_x = gr.HTML()
+ html_info = gr.HTML()
+ parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
+ return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info
+
+
def create_ui(wrap_gradio_gpu_call):
import modules.img2img
import modules.txt2img
+ parameters_copypaste.reset()
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _,\
@@ -693,35 +745,11 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
- aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui()
-
with gr.Group():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
- with gr.Column(variant='panel'):
-
- with gr.Group():
- txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False)
- txt2img_gallery = gr.Gallery(label='Output', show_label=False, elem_id='txt2img_gallery').style(grid=4)
-
- with gr.Column():
- with gr.Row():
- save = gr.Button('Save')
- send_to_img2img = gr.Button('Send to img2img')
- send_to_inpaint = gr.Button('Send to inpaint')
- send_to_extras = gr.Button('Send to extras')
- button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
- open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id)
-
- with gr.Row():
- do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
-
- with gr.Row():
- download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
-
- with gr.Group():
- html_info = gr.HTML()
- generation_info = gr.Textbox(visible=False)
+ txt2img_gallery, generation_info, html_info = create_output_panel("txt2img", opts.outdir_txt2img_samples)
+ parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@@ -750,14 +778,6 @@ def create_ui(wrap_gradio_gpu_call):
denoising_strength,
firstphase_width,
firstphase_height,
- aesthetic_lr,
- aesthetic_weight,
- aesthetic_steps,
- aesthetic_imgs,
- aesthetic_slerp,
- aesthetic_imgs_text,
- aesthetic_slerp_angle,
- aesthetic_text_negative
] + custom_inputs,
outputs=[
@@ -788,23 +808,6 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[hr_options],
)
- save.click(
- fn=wrap_gradio_call(save_files),
- _js="(x, y, z, w) => [x, y, z, selected_gallery_index()]",
- inputs=[
- generation_info,
- txt2img_gallery,
- do_make_zip,
- html_info,
- ],
- outputs=[
- download_files,
- html_info,
- html_info,
- html_info,
- ]
- )
-
roll.click(
fn=roll_artist,
_js="update_txt2img_tokens",
@@ -836,15 +839,9 @@ def create_ui(wrap_gradio_gpu_call):
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
(firstphase_width, "First pass size-1"),
(firstphase_height, "First pass size-2"),
- (aesthetic_lr, "Aesthetic LR"),
- (aesthetic_weight, "Aesthetic weight"),
- (aesthetic_steps, "Aesthetic steps"),
- (aesthetic_imgs, "Aesthetic embedding"),
- (aesthetic_slerp, "Aesthetic slerp"),
- (aesthetic_imgs_text, "Aesthetic text"),
- (aesthetic_text_negative, "Aesthetic text negative"),
- (aesthetic_slerp_angle, "Aesthetic slerp angle"),
+ *modules.scripts.scripts_txt2img.infotext_fields
]
+ parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields)
txt2img_preview_params = [
txt2img_prompt,
@@ -931,35 +928,11 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
- aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui()
-
with gr.Group():
custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
- with gr.Column(variant='panel'):
-
- with gr.Group():
- img2img_preview = gr.Image(elem_id='img2img_preview', visible=False)
- img2img_gallery = gr.Gallery(label='Output', show_label=False, elem_id='img2img_gallery').style(grid=4)
-
- with gr.Column():
- with gr.Row():
- save = gr.Button('Save')
- img2img_send_to_img2img = gr.Button('Send to img2img')
- img2img_send_to_inpaint = gr.Button('Send to inpaint')
- img2img_send_to_extras = gr.Button('Send to extras')
- button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
- open_img2img_folder = gr.Button(folder_symbol, elem_id=button_id)
-
- with gr.Row():
- do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
-
- with gr.Row():
- download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
-
- with gr.Group():
- html_info = gr.HTML()
- generation_info = gr.Textbox(visible=False)
+ img2img_gallery, generation_info, html_info = create_output_panel("img2img", opts.outdir_img2img_samples)
+ parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@@ -1024,14 +997,6 @@ def create_ui(wrap_gradio_gpu_call):
inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
- aesthetic_lr_im,
- aesthetic_weight_im,
- aesthetic_steps_im,
- aesthetic_imgs_im,
- aesthetic_slerp_im,
- aesthetic_imgs_text_im,
- aesthetic_slerp_angle_im,
- aesthetic_text_negative_im,
] + custom_inputs,
outputs=[
img2img_gallery,
@@ -1055,25 +1020,9 @@ def create_ui(wrap_gradio_gpu_call):
fn=interrogate_deepbooru,
inputs=[init_img],
outputs=[img2img_prompt],
- )
-
- save.click(
- fn=wrap_gradio_call(save_files),
- _js="(x, y, z, w) => [x, y, z, selected_gallery_index()]",
- inputs=[
- generation_info,
- img2img_gallery,
- do_make_zip,
- html_info,
- ],
- outputs=[
- download_files,
- html_info,
- html_info,
- html_info,
- ]
)
+
roll.click(
fn=roll_artist,
_js="update_img2img_tokens",
@@ -1107,6 +1056,8 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[prompt, negative_prompt, style1, style2],
)
+ token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
+
img2img_paste_fields = [
(img2img_prompt, "Prompt"),
(img2img_negative_prompt, "Negative prompt"),
@@ -1123,16 +1074,10 @@ def create_ui(wrap_gradio_gpu_call):
(seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"),
(denoising_strength, "Denoising strength"),
- (aesthetic_lr_im, "Aesthetic LR"),
- (aesthetic_weight_im, "Aesthetic weight"),
- (aesthetic_steps_im, "Aesthetic steps"),
- (aesthetic_imgs_im, "Aesthetic embedding"),
- (aesthetic_slerp_im, "Aesthetic slerp"),
- (aesthetic_imgs_text_im, "Aesthetic text"),
- (aesthetic_text_negative_im, "Aesthetic text negative"),
- (aesthetic_slerp_angle_im, "Aesthetic slerp angle"),
+ *modules.scripts.scripts_img2img.infotext_fields
]
- token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
+ parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields)
+ parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields)
with gr.Blocks(analytics_enabled=False) as extras_interface:
with gr.Row().style(equal_height=False):
@@ -1145,12 +1090,8 @@ def create_ui(wrap_gradio_gpu_call):
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file")
with gr.TabItem('Batch from Directory'):
- extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs,
- placeholder="A directory on the same machine where the server is running."
- )
- extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs,
- placeholder="Leave blank to save images to the default path."
- )
+ extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.")
+ extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.")
show_extras_results = gr.Checkbox(label='Show result images', value=True)
with gr.Tabs(elem_id="extras_resize_mode"):
@@ -1177,17 +1118,12 @@ def create_ui(wrap_gradio_gpu_call):
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer)
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer)
- submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
+ with gr.Group():
+ upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False)
- with gr.Column(variant='panel'):
- result_images = gr.Gallery(label="Result", show_label=False)
- html_info_x = gr.HTML()
- html_info = gr.HTML()
- extras_send_to_img2img = gr.Button('Send to img2img')
- extras_send_to_inpaint = gr.Button('Send to inpaint')
- button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else ''
- open_extras_folder = gr.Button('Open output directory', elem_id=button_id)
+ submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
+ result_images, html_info_x, html_info = create_output_panel("extras", opts.outdir_extras_samples)
submit.click(
fn=wrap_gradio_gpu_call(modules.extras.run_extras),
@@ -1210,6 +1146,7 @@ def create_ui(wrap_gradio_gpu_call):
extras_upscaler_1,
extras_upscaler_2,
extras_upscaler_2_visibility,
+ upscale_before_face_fix,
],
outputs=[
result_images,
@@ -1217,19 +1154,11 @@ def create_ui(wrap_gradio_gpu_call):
html_info,
]
)
+ parameters_copypaste.add_paste_fields("extras", extras_image, None)
- extras_send_to_img2img.click(
- fn=lambda x: image_from_url_text(x),
- _js="extract_image_from_gallery_img2img",
- inputs=[result_images],
- outputs=[init_img],
- )
-
- extras_send_to_inpaint.click(
- fn=lambda x: image_from_url_text(x),
- _js="extract_image_from_gallery_inpaint",
- inputs=[result_images],
- outputs=[init_img_with_mask],
+ extras_image.change(
+ fn=modules.extras.clear_cache,
+ inputs=[], outputs=[]
)
with gr.Blocks(analytics_enabled=False) as pnginfo_interface:
@@ -1241,24 +1170,15 @@ def create_ui(wrap_gradio_gpu_call):
html = gr.HTML()
generation_info = gr.Textbox(visible=False)
html2 = gr.HTML()
-
with gr.Row():
- pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
- pnginfo_send_to_img2img = gr.Button('Send to img2img')
+ buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"])
+ parameters_copypaste.bind_buttons(buttons, image, generation_info)
image.change(
fn=wrap_gradio_call(modules.extras.run_pnginfo),
inputs=[image],
outputs=[html, generation_info, html2],
)
- #images history
- images_history_switch_dict = {
- "fn":modules.generation_parameters_copypaste.connect_paste,
- "t2i":txt2img_paste_fields,
- "i2i":img2img_paste_fields
- }
-
- images_history = img_his.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
with gr.Blocks() as modelmerger_interface:
with gr.Row().style(equal_height=False):
@@ -1300,25 +1220,15 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
- with gr.Tab(label="Create aesthetic images embedding"):
-
- new_embedding_name_ae = gr.Textbox(label="Name")
- process_src_ae = gr.Textbox(label='Source directory')
- batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256)
- with gr.Row():
- with gr.Column(scale=3):
- gr.HTML(value="")
-
- with gr.Column():
- create_embedding_ae = gr.Button(value="Create images embedding", variant='primary')
-
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
+ new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork", choices=modules.hypernetworks.ui.keys)
+ new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. relu-like - Kaiming, sigmoid-like - Xavier is recommended", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"])
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
+ new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout")
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
- new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu"])
with gr.Row():
with gr.Column(scale=3):
@@ -1337,6 +1247,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Row():
process_flip = gr.Checkbox(label='Create flipped copies')
process_split = gr.Checkbox(label='Split oversized images')
+ process_focal_crop = gr.Checkbox(label='Auto focal point crop')
process_caption = gr.Checkbox(label='Use BLIP for caption')
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False)
@@ -1344,6 +1255,12 @@ def create_ui(wrap_gradio_gpu_call):
process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05)
process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05)
+ with gr.Row(visible=False) as process_focal_crop_row:
+ process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05)
+ process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05)
+ process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05)
+ process_focal_crop_debug = gr.Checkbox(label='Create debug image')
+
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
@@ -1357,6 +1274,12 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[process_split_extra_row],
)
+ process_focal_crop.change(
+ fn=lambda show: gr_show(show),
+ inputs=[process_focal_crop],
+ outputs=[process_focal_crop_row],
+ )
+
with gr.Tab(label="Train"):
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
with gr.Row():
@@ -1368,7 +1291,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Row():
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005")
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001")
-
+
batch_size = gr.Number(label='Batch size', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
@@ -1411,21 +1334,6 @@ def create_ui(wrap_gradio_gpu_call):
]
)
- create_embedding_ae.click(
- fn=aesthetic_clip.generate_imgs_embd,
- inputs=[
- new_embedding_name_ae,
- process_src_ae,
- batch_ae
- ],
- outputs=[
- aesthetic_imgs,
- aesthetic_imgs_im,
- ti_output,
- ti_outcome,
- ]
- )
-
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
@@ -1433,8 +1341,10 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_sizes,
overwrite_old_hypernetwork,
new_hypernetwork_layer_structure,
- new_hypernetwork_add_layer_norm,
new_hypernetwork_activation_func,
+ new_hypernetwork_initialization_option,
+ new_hypernetwork_add_layer_norm,
+ new_hypernetwork_use_dropout
],
outputs=[
train_hypernetwork_name,
@@ -1458,6 +1368,11 @@ def create_ui(wrap_gradio_gpu_call):
process_caption_deepbooru,
process_split_threshold,
process_overlap_ratio,
+ process_focal_crop,
+ process_focal_crop_face_weight,
+ process_focal_crop_entropy_weight,
+ process_focal_crop_edges_weight,
+ process_focal_crop_debug,
],
outputs=[
ti_output,
@@ -1559,31 +1474,14 @@ def create_ui(wrap_gradio_gpu_call):
components = []
component_dict = {}
- def open_folder(f):
- if not os.path.exists(f):
- print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
- return
- elif not os.path.isdir(f):
- print(f"""
-WARNING
-An open_folder request was made with an argument that is not a folder.
-This could be an error or a malicious attempt to run code on your computer.
-Requested path was: {f}
-""", file=sys.stderr)
- return
-
- if not shared.cmd_opts.hide_ui_dir_config:
- path = os.path.normpath(f)
- if platform.system() == "Windows":
- os.startfile(path)
- elif platform.system() == "Darwin":
- sp.Popen(["open", path])
- else:
- sp.Popen(["xdg-open", path])
+ script_callbacks.ui_settings_callback()
+ opts.reorder()
def run_settings(*args):
changed = 0
+ assert not shared.cmd_opts.freeze_settings, "changing settings is disabled"
+
for key, value, comp in zip(opts.data_labels.keys(), args, components):
if comp != dummy_component and not opts.same_type(value, opts.data_labels[key].default):
return f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}", opts.dumpjson()
@@ -1613,13 +1511,15 @@ Requested path was: {f}
return f'{changed} settings changed.', opts.dumpjson()
def run_settings_single(value, key):
+ assert not shared.cmd_opts.freeze_settings, "changing settings is disabled"
+
if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson()
+ oldval = opts.data.get(key, None)
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
return gr.update(value=oldval), opts.dumpjson()
- oldval = opts.data.get(key, None)
opts.data[key] = value
if oldval != value:
@@ -1648,8 +1548,9 @@ Requested path was: {f}
column = None
with gr.Row(elem_id="settings").style(equal_height=False):
for i, (k, item) in enumerate(opts.data_labels.items()):
+ section_must_be_skipped = item.section[0] is None
- if previous_section != item.section:
+ if previous_section != item.section and not section_must_be_skipped:
if cols_displayed < settings_cols and (items_displayed >= items_per_col or previous_section is None):
if column is not None:
column.__exit__()
@@ -1662,11 +1563,14 @@ Requested path was: {f}
previous_section = item.section
- gr.HTML(elem_id="settings_header_text_{}".format(item.section[0]), value='<h1 class="gr-button-lg">{}</h1>'.format(item.section[1]))
+ elem_id, text = item.section
+ gr.HTML(elem_id="settings_header_text_{}".format(elem_id), value='<h1 class="gr-button-lg">{}</h1>'.format(text))
- if k in quicksettings_names:
+ if k in quicksettings_names and not shared.cmd_opts.freeze_settings:
quicksettings_list.append((i, k, item))
components.append(dummy_component)
+ elif section_must_be_skipped:
+ components.append(dummy_component)
else:
component = create_setting_component(k)
component_dict[k] = component
@@ -1697,7 +1601,7 @@ Requested path was: {f}
def reload_scripts():
modules.scripts.reload_script_body_only()
- reload_javascript() # need to refresh the html page
+ reload_javascript() # need to refresh the html page
reload_script_bodies.click(
fn=reload_scripts,
@@ -1708,9 +1612,10 @@ Requested path was: {f}
def request_restart():
shared.state.interrupt()
- settings_interface.gradio_ref.do_restart = True
+ shared.state.need_restart = True
restart_gradio.click(
+
fn=request_restart,
inputs=[],
outputs=[],
@@ -1725,30 +1630,40 @@ Requested path was: {f}
(img2img_interface, "img2img", "img2img"),
(extras_interface, "Extras", "extras"),
(pnginfo_interface, "PNG Info", "pnginfo"),
- (images_history, "History", "images_history"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
(train_interface, "Train", "ti"),
- (settings_interface, "Settings", "settings"),
]
- with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file:
- css = file.read()
+ css = ""
+
+ for cssfile in modules.scripts.list_files_with_name("style.css"):
+ if not os.path.isfile(cssfile):
+ continue
+
+ with open(cssfile, "r", encoding="utf8") as file:
+ css += file.read() + "\n"
if os.path.exists(os.path.join(script_path, "user.css")):
with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file:
- usercss = file.read()
- css += usercss
+ css += file.read() + "\n"
if not cmd_opts.no_progressbar_hiding:
css += css_hide_progressbar
+ interfaces += script_callbacks.ui_tabs_callback()
+ interfaces += [(settings_interface, "Settings", "settings")]
+
+ extensions_interface = ui_extensions.create_ui()
+ interfaces += [(extensions_interface, "Extensions", "extensions")]
+
with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Row(elem_id="quicksettings"):
for i, k, item in quicksettings_list:
component = create_setting_component(k, is_quicksettings=True)
component_dict[k] = component
- settings_interface.gradio_ref = demo
+ parameters_copypaste.integrate_settings_paste_fields(component_dict)
+ parameters_copypaste.run_bind()
with gr.Tabs(elem_id="tabs") as tabs:
for interface, label, ifid in interfaces:
@@ -1803,85 +1718,6 @@ Requested path was: {f}
component_dict['sd_model_checkpoint'],
]
)
- paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration', 'Seed', 'Size-1', 'Size-2']
- txt2img_fields = [field for field,name in txt2img_paste_fields if name in paste_field_names]
- img2img_fields = [field for field,name in img2img_paste_fields if name in paste_field_names]
- send_to_img2img.click(
- fn=lambda img, *args: (image_from_url_text(img),*args),
- _js="(gallery, ...args) => [extract_image_from_gallery_img2img(gallery), ...args]",
- inputs=[txt2img_gallery] + txt2img_fields,
- outputs=[init_img] + img2img_fields,
- )
-
- send_to_inpaint.click(
- fn=lambda x, *args: (image_from_url_text(x), *args),
- _js="(gallery, ...args) => [extract_image_from_gallery_inpaint(gallery), ...args]",
- inputs=[txt2img_gallery] + txt2img_fields,
- outputs=[init_img_with_mask] + img2img_fields,
- )
-
- img2img_send_to_img2img.click(
- fn=lambda x: image_from_url_text(x),
- _js="extract_image_from_gallery_img2img",
- inputs=[img2img_gallery],
- outputs=[init_img],
- )
-
- img2img_send_to_inpaint.click(
- fn=lambda x: image_from_url_text(x),
- _js="extract_image_from_gallery_inpaint",
- inputs=[img2img_gallery],
- outputs=[init_img_with_mask],
- )
-
- send_to_extras.click(
- fn=lambda x: image_from_url_text(x),
- _js="extract_image_from_gallery_extras",
- inputs=[txt2img_gallery],
- outputs=[extras_image],
- )
-
- open_txt2img_folder.click(
- fn=lambda: open_folder(opts.outdir_samples or opts.outdir_txt2img_samples),
- inputs=[],
- outputs=[],
- )
-
- open_img2img_folder.click(
- fn=lambda: open_folder(opts.outdir_samples or opts.outdir_img2img_samples),
- inputs=[],
- outputs=[],
- )
-
- open_extras_folder.click(
- fn=lambda: open_folder(opts.outdir_samples or opts.outdir_extras_samples),
- inputs=[],
- outputs=[],
- )
-
- img2img_send_to_extras.click(
- fn=lambda x: image_from_url_text(x),
- _js="extract_image_from_gallery_extras",
- inputs=[img2img_gallery],
- outputs=[extras_image],
- )
-
- settings_map = {
- 'sd_hypernetwork': 'Hypernet',
- 'CLIP_stop_at_last_layers': 'Clip skip',
- 'sd_model_checkpoint': 'Model hash',
- }
-
- settings_paste_fields = [
- (component_dict[k], lambda d, k=k, v=v: apply_setting(k, d.get(v, None)))
- for k, v in settings_map.items()
- ]
-
- modules.generation_parameters_copypaste.connect_paste(txt2img_paste, txt2img_paste_fields + settings_paste_fields, txt2img_prompt)
- modules.generation_parameters_copypaste.connect_paste(img2img_paste, img2img_paste_fields + settings_paste_fields, img2img_prompt)
-
- modules.generation_parameters_copypaste.connect_paste(pnginfo_send_to_txt2img, txt2img_paste_fields + settings_paste_fields, generation_info, 'switch_to_txt2img')
- modules.generation_parameters_copypaste.connect_paste(pnginfo_send_to_img2img, img2img_paste_fields + settings_paste_fields, generation_info, 'switch_to_img2img_img2img')
ui_config_file = cmd_opts.ui_config_file
ui_settings = {}
@@ -1901,7 +1737,7 @@ Requested path was: {f}
def apply_field(obj, field, condition=None, init_field=None):
key = path + "/" + field
- if getattr(obj,'custom_script_source',None) is not None:
+ if getattr(obj, 'custom_script_source', None) is not None:
key = 'customscript/' + obj.custom_script_source + '/' + key
if getattr(obj, 'do_not_save_to_config', False):
@@ -1960,9 +1796,10 @@ def load_javascript(raw_response):
with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile:
javascript = f'<script>{jsfile.read()}</script>'
- jsdir = os.path.join(script_path, "javascript")
- for filename in sorted(os.listdir(jsdir)):
- with open(os.path.join(jsdir, filename), "r", encoding="utf8") as jsfile:
+ scripts_list = modules.scripts.list_scripts("javascript", ".js")
+
+ for basedir, filename, path in scripts_list:
+ with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n<!-- {filename} --><script>{jsfile.read()}</script>"
if cmd_opts.theme is not None:
@@ -1980,6 +1817,5 @@ def load_javascript(raw_response):
gradio.routes.templates.TemplateResponse = template_response
-reload_javascript = partial(load_javascript,
- gradio.routes.templates.TemplateResponse)
+reload_javascript = partial(load_javascript, gradio.routes.templates.TemplateResponse)
reload_javascript()
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py
new file mode 100644
index 00000000..e74b7d68
--- /dev/null
+++ b/modules/ui_extensions.py
@@ -0,0 +1,172 @@
+import json
+import os.path
+import shutil
+import sys
+import time
+import traceback
+
+import git
+
+import gradio as gr
+import html
+
+from modules import extensions, shared, paths
+
+
+def check_access():
+ assert not shared.cmd_opts.disable_extension_access, "extension access disabed because of commandline flags"
+
+
+def apply_and_restart(disable_list, update_list):
+ check_access()
+
+ disabled = json.loads(disable_list)
+ assert type(disabled) == list, f"wrong disable_list data for apply_and_restart: {disable_list}"
+
+ update = json.loads(update_list)
+ assert type(update) == list, f"wrong update_list data for apply_and_restart: {update_list}"
+
+ update = set(update)
+
+ for ext in extensions.extensions:
+ if ext.name not in update:
+ continue
+
+ try:
+ ext.pull()
+ except Exception:
+ print(f"Error pulling updates for {ext.name}:", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ shared.opts.disabled_extensions = disabled
+ shared.opts.save(shared.config_filename)
+
+ shared.state.interrupt()
+ shared.state.need_restart = True
+
+
+def check_updates():
+ check_access()
+
+ for ext in extensions.extensions:
+ if ext.remote is None:
+ continue
+
+ try:
+ ext.check_updates()
+ except Exception:
+ print(f"Error checking updates for {ext.name}:", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ return extension_table()
+
+
+def extension_table():
+ code = f"""<!-- {time.time()} -->
+ <table id="extensions">
+ <thead>
+ <tr>
+ <th><abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr></th>
+ <th>URL</th>
+ <th><abbr title="Use checkbox to mark the extension for update; it will be updated when you click apply button">Update</abbr></th>
+ </tr>
+ </thead>
+ <tbody>
+ """
+
+ for ext in extensions.extensions:
+ if ext.can_update:
+ ext_status = f"""<label><input class="gr-check-radio gr-checkbox" name="update_{html.escape(ext.name)}" checked="checked" type="checkbox">{html.escape(ext.status)}</label>"""
+ else:
+ ext_status = ext.status
+
+ code += f"""
+ <tr>
+ <td><label><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
+ <td><a href="{html.escape(ext.remote or '')}">{html.escape(ext.remote or '')}</a></td>
+ <td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td>
+ </tr>
+ """
+
+ code += """
+ </tbody>
+ </table>
+ """
+
+ return code
+
+
+def install_extension_from_url(dirname, url):
+ check_access()
+
+ assert url, 'No URL specified'
+
+ if dirname is None or dirname == "":
+ *parts, last_part = url.split('/')
+ last_part = last_part.replace(".git", "")
+
+ dirname = last_part
+
+ target_dir = os.path.join(extensions.extensions_dir, dirname)
+ assert not os.path.exists(target_dir), f'Extension directory already exists: {target_dir}'
+
+ assert len([x for x in extensions.extensions if x.remote == url]) == 0, 'Extension with this URL is already installed'
+
+ tmpdir = os.path.join(paths.script_path, "tmp", dirname)
+
+ try:
+ shutil.rmtree(tmpdir, True)
+
+ repo = git.Repo.clone_from(url, tmpdir)
+ repo.remote().fetch()
+
+ os.rename(tmpdir, target_dir)
+
+ extensions.list_extensions()
+ return [extension_table(), html.escape(f"Installed into {target_dir}. Use Installed tab to restart.")]
+ finally:
+ shutil.rmtree(tmpdir, True)
+
+
+def create_ui():
+ import modules.ui
+
+ with gr.Blocks(analytics_enabled=False) as ui:
+ with gr.Tabs(elem_id="tabs_extensions") as tabs:
+ with gr.TabItem("Installed"):
+ extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False)
+ extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False)
+
+ with gr.Row():
+ apply = gr.Button(value="Apply and restart UI", variant="primary")
+ check = gr.Button(value="Check for updates")
+
+ extensions_table = gr.HTML(lambda: extension_table())
+
+ apply.click(
+ fn=apply_and_restart,
+ _js="extensions_apply",
+ inputs=[extensions_disabled_list, extensions_update_list],
+ outputs=[],
+ )
+
+ check.click(
+ fn=check_updates,
+ _js="extensions_check",
+ inputs=[],
+ outputs=[extensions_table],
+ )
+
+ with gr.TabItem("Install from URL"):
+ install_url = gr.Text(label="URL for extension's git repository")
+ install_dirname = gr.Text(label="Local directory name", placeholder="Leave empty for auto")
+ intall_button = gr.Button(value="Install", variant="primary")
+ intall_result = gr.HTML(elem_id="extension_install_result")
+
+ intall_button.click(
+ fn=modules.ui.wrap_gradio_call(install_extension_from_url, extra_outputs=[gr.update()]),
+ inputs=[install_dirname, install_url],
+ outputs=[extensions_table, intall_result],
+ )
+
+ return ui