1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
import torch
import network
from lyco_helpers import factorization
from einops import rearrange
from modules import devices
class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
return NetworkModuleOFT(net, weights)
return None
# adapted from kohya-ss' implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
# and KohakuBlueleaf's implementation https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.lin_module = None
self.org_module: list[torch.Module] = [self.sd_module]
# kohya-ss
if "oft_blocks" in weights.w.keys():
self.is_kohya = True
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
self.alpha = weights.w["alpha"]
self.dim = self.oft_blocks.shape[0] # lora dim
#self.oft_blocks = rearrange(self.oft_blocks, 'k m ... -> (k m) ...')
elif "oft_diag" in weights.w.keys():
self.is_kohya = False
self.oft_blocks = weights.w["oft_diag"] # (num_blocks, block_size, block_size)
# alpha is rank if alpha is 0 or None
if self.alpha is None:
pass
self.dim = self.oft_blocks.shape[1] # FIXME: almost certainly incorrect, assumes tensor is shape [*, m, n]
else:
raise ValueError("oft_blocks or oft_diag must be in weights dict")
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
if is_linear:
self.out_dim = self.sd_module.out_features
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim
elif is_conv:
self.out_dim = self.sd_module.out_channels
else:
raise ValueError("sd_module must be Linear or Conv")
if self.is_kohya:
#self.num_blocks = self.dim
#self.block_size = self.out_dim // self.num_blocks
#self.block_size = self.dim
#self.num_blocks = self.out_dim // self.block_size
self.constraint = self.alpha * self.out_dim
self.num_blocks, self.block_size = factorization(self.out_dim, self.dim)
else:
self.constraint = None
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
if is_other_linear:
self.lin_module = self.create_module(weights.w, "oft_diag", none_ok=True)
def create_module(self, weights, key, none_ok=False):
weight = weights.get(key)
if weight is None and none_ok:
return None
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
if is_linear:
weight = weight.reshape(weight.shape[0], -1)
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif is_conv and key == "lora_down.weight" or key == "dyn_up":
if len(weight.shape) == 2:
weight = weight.reshape(weight.shape[0], -1, 1, 1)
if weight.shape[2] != 1 or weight.shape[3] != 1:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
else:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif is_conv and key == "lora_mid.weight":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
elif is_conv and key == "lora_up.weight" or key == "dyn_down":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else:
raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
with torch.no_grad():
if weight.shape != module.weight.shape:
weight = weight.reshape(module.weight.shape)
module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype)
module.weight.requires_grad_(False)
return module
def merge_weight(self, R_weight, org_weight):
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
if org_weight.dim() == 4:
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
else:
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
return weight
def get_weight(self, oft_blocks, multiplier=None):
if self.constraint is not None:
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
norm_Q = torch.norm(block_Q.flatten())
if self.constraint is not None:
new_norm_Q = torch.clamp(norm_Q, max=constraint)
else:
new_norm_Q = norm_Q
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
m_I = torch.eye(self.num_blocks, device=oft_blocks.device).unsqueeze(0).repeat(self.block_size, 1, 1)
#m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
R = torch.block_diag(*block_R_weighted)
return R
def calc_updown_kohya(self, orig_weight, multiplier):
R = self.get_weight(self.oft_blocks, multiplier)
merged_weight = self.merge_weight(R, orig_weight)
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape
orig_weight = orig_weight
return self.finalize_updown(updown, orig_weight, output_shape)
def calc_updown_kb(self, orig_weight, multiplier):
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
if not is_other_linear:
#if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
# orig_weight=orig_weight.permute(1, 0)
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
# without this line the results are significantly worse / less accurate
oft_blocks = oft_blocks - oft_blocks.transpose(1, 2)
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device)
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R,
merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
#if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
# orig_weight=orig_weight.permute(1, 0)
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape
else:
# FIXME: skip MultiheadAttention for now
#up = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
updown = torch.zeros([orig_weight.shape[1], orig_weight.shape[1]], device=orig_weight.device, dtype=orig_weight.dtype)
output_shape = (orig_weight.shape[1], orig_weight.shape[1])
return self.finalize_updown(updown, orig_weight, output_shape)
def calc_updown(self, orig_weight):
multiplier = self.multiplier() * self.calc_scale()
#if self.is_kohya:
# return self.calc_updown_kohya(orig_weight, multiplier)
#else:
return self.calc_updown_kb(orig_weight, multiplier)
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
#return super().finalize_updown(updown, orig_weight, output_shape, ex_bias)
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
if ex_bias is not None:
ex_bias = ex_bias * self.multiplier()
return updown, ex_bias
|