1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
import torch
import network
from modules import devices
class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]):
return NetworkModuleOFT(net, weights)
return None
# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.oft_blocks = weights.w["oft_blocks"]
self.alpha = weights.w["alpha"]
self.dim = self.oft_blocks.shape[0]
self.num_blocks = self.dim
if "Linear" in self.sd_module.__class__.__name__:
self.out_dim = self.sd_module.out_features
elif "Conv" in self.sd_module.__class__.__name__:
self.out_dim = self.sd_module.out_channels
self.constraint = self.alpha * self.out_dim
self.block_size = self.out_dim // self.num_blocks
self.org_module: list[torch.Module] = [self.sd_module]
self.org_weight = self.org_module[0].weight.to(self.org_module[0].weight.device, copy=True)
#self.org_weight = self.org_module[0].weight.to(devices.cpu, copy=True)
self.R = self.get_weight(self.oft_blocks)
self.merged_weight = self.merge_weight()
self.apply_to()
self.merged = False
def merge_weight(self):
org_sd = self.org_module[0].state_dict()
R = self.R.to(self.org_weight.device, dtype=self.org_weight.dtype)
if self.org_weight.dim() == 4:
weight = torch.einsum("oihw, op -> pihw", self.org_weight, R)
else:
weight = torch.einsum("oi, op -> pi", self.org_weight, R)
org_sd['weight'] = weight
# replace weight
#self.org_module[0].load_state_dict(org_sd)
return weight
pass
def replace_weight(self, new_weight):
org_sd = self.org_module[0].state_dict()
org_sd['weight'] = new_weight
self.org_module[0].load_state_dict(org_sd)
self.merged = True
def restore_weight(self):
org_sd = self.org_module[0].state_dict()
org_sd['weight'] = self.org_weight
self.org_module[0].load_state_dict(org_sd)
self.merged = False
# replace forward method of original linear rather than replacing the module
# how do we revert this to unload the weights?
def apply_to(self):
self.org_forward = self.org_module[0].forward
#self.org_module[0].forward = self.forward
self.org_module[0].register_forward_pre_hook(self.pre_forward_hook)
self.org_module[0].register_forward_hook(self.forward_hook)
def get_weight(self, oft_blocks, multiplier=None):
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=constraint)
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
#block_R_weighted = multiplier * block_R + (1 - multiplier) * I
#R = torch.block_diag(*block_R_weighted)
R = torch.block_diag(*block_R)
return R
def calc_updown(self, orig_weight):
#oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
#R = self.R.to(orig_weight.device, dtype=orig_weight.dtype)
##self.R = R
#if orig_weight.dim() == 4:
# weight = torch.einsum("oihw, op -> pihw", orig_weight, R)
#else:
# weight = torch.einsum("oi, op -> pi", orig_weight, R)
#updown = orig_weight @ R
#updown = weight
updown = torch.zeros_like(orig_weight, device=orig_weight.device, dtype=orig_weight.dtype)
#updown = orig_weight
output_shape = orig_weight.shape
#orig_weight = self.merged_weight.to(orig_weight.device, dtype=orig_weight.dtype)
#output_shape = self.oft_blocks.shape
return self.finalize_updown(updown, orig_weight, output_shape)
def pre_forward_hook(self, module, input):
if not self.merged:
self.replace_weight(self.merged_weight)
def forward_hook(self, module, args, output):
if self.merged:
pass
#self.restore_weight()
#print(f'Forward hook in {self.network_key} called')
#x = output
#R = self.R.to(x.device, dtype=x.dtype)
#if x.dim() == 4:
# x = x.permute(0, 2, 3, 1)
# x = torch.matmul(x, R)
# x = x.permute(0, 3, 1, 2)
#else:
# x = torch.matmul(x, R)
#return x
# def forward(self, x, y=None):
# x = self.org_forward(x)
# if self.multiplier() == 0.0:
# return x
# # calculating R here is excruciatingly slow
# #R = self.get_weight().to(x.device, dtype=x.dtype)
# R = self.R.to(x.device, dtype=x.dtype)
# if x.dim() == 4:
# x = x.permute(0, 2, 3, 1)
# x = torch.matmul(x, R)
# x = x.permute(0, 3, 1, 2)
# else:
# x = torch.matmul(x, R)
# return x
|