aboutsummaryrefslogtreecommitdiffstats
path: root/extensions-builtin/Lora/network_oft.py
blob: ebe6740c5c0d45050f5be6cb896a3b3a18f74c0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import network


class ModuleTypeOFT(network.ModuleType):
    def create_module(self, net: network.Network, weights: network.NetworkWeights):
        if all(x in weights.w for x in ["oft_blocks"]):
            return NetworkModuleOFT(net, weights)

        return None

# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
class NetworkModuleOFT(network.NetworkModule):
    def __init__(self,  net: network.Network, weights: network.NetworkWeights):

        super().__init__(net, weights)

        self.oft_blocks = weights.w["oft_blocks"]
        self.alpha = weights.w["alpha"]
        self.dim = self.oft_blocks.shape[0]
        self.num_blocks = self.dim

        if "Linear" in self.sd_module.__class__.__name__:
            self.out_dim = self.sd_module.out_features
        elif "Conv" in self.sd_module.__class__.__name__:
            self.out_dim = self.sd_module.out_channels

        self.constraint = self.alpha * self.out_dim
        self.block_size = self.out_dim // self.num_blocks

        self.org_module: list[torch.Module] = [self.sd_module]
        #self.org_weight = self.org_module[0].weight.to(self.org_module[0].weight.device, copy=True)

        init_multiplier = self.multiplier() * self.calc_scale()
        self.last_multiplier = init_multiplier

        self.R = self.get_weight(self.oft_blocks, init_multiplier)

        self.hooks = []
        self.merged_weight = self.merge_weight()

        #self.apply_to()
        self.applied = False
        self.merged = False

    def merge_weight(self):
        org_weight = self.org_module[0].weight
        R = self.R.to(org_weight.device, dtype=org_weight.dtype)
        if org_weight.dim() == 4:
            weight = torch.einsum("oihw, op -> pihw", org_weight, R)
        else:
            weight = torch.einsum("oi, op -> pi", org_weight, R)
        return weight

    def replace_weight(self, new_weight):
        org_sd = self.org_module[0].state_dict()
        org_sd['weight'] = new_weight
        self.org_module[0].load_state_dict(org_sd)
        self.merged = True

    def restore_weight(self):
        pass
        #org_sd = self.org_module[0].state_dict()
        #org_sd['weight'] = self.org_weight
        #self.org_module[0].load_state_dict(org_sd)
        #self.merged = False

    # FIXME: hook forward method of original linear, but how do we undo the hook when we are done?
    def apply_to(self):
        if not self.applied:
            self.org_forward = self.org_module[0].forward
            #self.org_module[0].forward = self.forward
            prehook = self.org_module[0].register_forward_pre_hook(self.pre_forward_hook)
            hook = self.org_module[0].register_forward_hook(self.forward_hook)
            self.hooks.append(prehook)
            self.hooks.append(hook)
            self.applied = True
    
    def remove_from(self):
        if self.applied:
            for hook in self.hooks:
                hook.remove()
            self.hooks = []
            self.applied = False

    def get_weight(self, oft_blocks, multiplier=None):
        multiplier = multiplier.to(oft_blocks.device, dtype=oft_blocks.dtype)
        constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
        block_Q = oft_blocks - oft_blocks.transpose(1, 2)
        norm_Q = torch.norm(block_Q.flatten())
        new_norm_Q = torch.clamp(norm_Q, max=constraint)
        block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
        m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
        block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
        block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
        R = torch.block_diag(*block_R_weighted)

        return R

    def calc_updown(self, orig_weight):
        if not self.applied:
            self.apply_to()

        self.merged_weight = self.merged_weight.to(orig_weight.device, dtype=orig_weight.dtype)

        updown = torch.zeros_like(orig_weight, device=orig_weight.device, dtype=orig_weight.dtype)
        output_shape = orig_weight.shape
        orig_weight = self.merged_weight
        #output_shape = self.oft_blocks.shape

        return self.finalize_updown(updown, orig_weight, output_shape)

    def pre_forward_hook(self, module, input):
        #if not self.applied:
        #    self.apply_to()

        multiplier = self.multiplier() * self.calc_scale()

        if not multiplier==self.last_multiplier or not self.merged:
            self.R = self.get_weight(self.oft_blocks, multiplier)
            self.last_multiplier = multiplier
            self.merged_weight = self.merge_weight()
            self.replace_weight(self.merged_weight)

    def forward_hook(self, module, args, output):
        pass