blob: 08bb26d6f6f4054ebd6b90d68efcafeb6e76bbee (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
import torch
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
from modules import errors
has_mps = getattr(torch, 'has_mps', False)
cpu = torch.device("cpu")
def get_optimal_device():
if torch.cuda.is_available():
return torch.device("cuda")
if has_mps:
return torch.device("mps")
return cpu
def torch_gc():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def enable_tf32():
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
errors.run(enable_tf32, "Enabling TF32")
device = get_optimal_device()
device_gfpgan = device_codeformer = cpu if device.type == 'mps' else device
def randn(seed, shape):
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
if device.type == 'mps':
generator = torch.Generator(device=cpu)
generator.manual_seed(seed)
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
return noise
torch.manual_seed(seed)
return torch.randn(shape, device=device)
def randn_without_seed(shape):
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
if device.type == 'mps':
generator = torch.Generator(device=cpu)
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
return noise
return torch.randn(shape, device=device)
|