aboutsummaryrefslogtreecommitdiffstats
path: root/modules/postprocessing.py
blob: cb85720b59eb16f981261fe08946a1e41633a04c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from __future__ import annotations
import os

import numpy as np
from PIL import Image

from typing import Callable, List, OrderedDict, Tuple
from functools import partial
from dataclasses import dataclass

from modules import shared, images, devices, ui_components
from modules.shared import opts
import modules.gfpgan_model
import modules.codeformer_model


class LruCache(OrderedDict):
    @dataclass(frozen=True)
    class Key:
        image_hash: int
        info_hash: int
        args_hash: int

    @dataclass
    class Value:
        image: Image.Image
        info: str

    def __init__(self, max_size: int = 5, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._max_size = max_size

    def get(self, key: LruCache.Key) -> LruCache.Value:
        ret = super().get(key)
        if ret is not None:
            self.move_to_end(key)  # Move to end of eviction list
        return ret

    def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
        self[key] = value
        while len(self) > self._max_size:
            self.popitem(last=False)


cached_images: LruCache = LruCache(max_size=5)


def run_postprocessing(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
    devices.torch_gc()

    shared.state.begin()
    shared.state.job = 'extras'

    imageArr = []
    # Also keep track of original file names
    imageNameArr = []
    outputs = []

    if extras_mode == 1:
        #convert file to pillow image
        for img in image_folder:
            image = Image.open(img)
            imageArr.append(image)
            imageNameArr.append(os.path.splitext(img.orig_name)[0])
    elif extras_mode == 2:
        assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'

        if input_dir == '':
            return outputs, "Please select an input directory.", ''
        image_list = shared.listfiles(input_dir)
        for img in image_list:
            try:
                image = Image.open(img)
            except Exception:
                continue
            imageArr.append(image)
            imageNameArr.append(img)
    else:
        imageArr.append(image)
        imageNameArr.append(None)

    if extras_mode == 2 and output_dir != '':
        outpath = output_dir
    else:
        outpath = opts.outdir_samples or opts.outdir_extras_samples

    # Extra operation definitions

    def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
        shared.state.job = 'extras-gfpgan'
        restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
        res = Image.fromarray(restored_img)

        if gfpgan_visibility < 1.0:
            res = Image.blend(image, res, gfpgan_visibility)

        info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
        return (res, info)

    def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
        shared.state.job = 'extras-codeformer'
        restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
        res = Image.fromarray(restored_img)

        if codeformer_visibility < 1.0:
            res = Image.blend(image, res, codeformer_visibility)

        info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
        return (res, info)

    def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
        shared.state.job = 'extras-upscale'
        upscaler = shared.sd_upscalers[scaler_index]
        res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
        if mode == 1 and crop:
            cropped = Image.new("RGB", (resize_w, resize_h))
            cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
            res = cropped
        return res

    def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
        # Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
        nonlocal upscaling_resize
        if resize_mode == 1:
            upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
            crop_info = " (crop)" if upscaling_crop else ""
            info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
        return (image, info)

    @dataclass
    class UpscaleParams:
        upscaler_idx: int
        blend_alpha: float

    def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
        blended_result: Image.Image = None
        image_hash: str = hash(np.array(image.getdata()).tobytes())
        for upscaler in params:
            upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
                            upscaling_resize_w, upscaling_resize_h, upscaling_crop)
            cache_key = LruCache.Key(image_hash=image_hash,
                                     info_hash=hash(info),
                                     args_hash=hash(upscale_args))
            cached_entry = cached_images.get(cache_key)
            if cached_entry is None:
                res = upscale(image, *upscale_args)
                info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
                cached_images.put(cache_key, LruCache.Value(image=res, info=info))
            else:
                res, info = cached_entry.image, cached_entry.info

            if blended_result is None:
                blended_result = res
            else:
                blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
        return (blended_result, info)

    # Build a list of operations to run
    facefix_ops: List[Callable] = []
    facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
    facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []

    upscale_ops: List[Callable] = []
    upscale_ops += [run_prepare_crop] if resize_mode == 1 else []

    if upscaling_resize != 0:
        step_params: List[UpscaleParams] = []
        step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
        if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
            step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))

        upscale_ops.append(partial(run_upscalers_blend, step_params))

    extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)

    for image, image_name in zip(imageArr, imageNameArr):
        if image is None:
            return outputs, "Please select an input image.", ''

        shared.state.textinfo = f'Processing image {image_name}'
        
        existing_pnginfo = image.info or {}

        image = image.convert("RGB")
        info = ""
        # Run each operation on each image
        for op in extras_ops:
            image, info = op(image, info)

        if opts.use_original_name_batch and image_name is not None:
            basename = os.path.splitext(os.path.basename(image_name))[0]
        else:
            basename = ''

        if opts.enable_pnginfo: # append info before save
            image.info = existing_pnginfo
            image.info["extras"] = info

        if save_output:
            # Add upscaler name as a suffix.
            suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
            # Add second upscaler if applicable.
            if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
                suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"

            images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
                            no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)

        if extras_mode != 2 or show_extras_results :
            outputs.append(image)

    devices.torch_gc()

    return outputs, ui_components.plaintext_to_html(info), ''


def clear_cache():
    cached_images.clear()