1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
import torch
from torch.nn.functional import silu
from types import MethodType
from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet, patches
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr, xlmr_m18
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
import ldm.modules.diffusionmodules.openaimodel
import ldm.models.diffusion.ddpm
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
import ldm.modules.encoders.modules
import sgm.modules.attention
import sgm.modules.diffusionmodules.model
import sgm.modules.diffusionmodules.openaimodel
import sgm.modules.encoders.modules
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
# new memory efficient cross attention blocks do not support hypernets and we already
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
# silence new console spam from SD2
ldm.modules.attention.print = shared.ldm_print
ldm.modules.diffusionmodules.model.print = shared.ldm_print
ldm.util.print = shared.ldm_print
ldm.models.diffusion.ddpm.print = shared.ldm_print
optimizers = []
current_optimizer: sd_hijack_optimizations.SdOptimization = None
def list_optimizers():
new_optimizers = script_callbacks.list_optimizers_callback()
new_optimizers = [x for x in new_optimizers if x.is_available()]
new_optimizers = sorted(new_optimizers, key=lambda x: x.priority, reverse=True)
optimizers.clear()
optimizers.extend(new_optimizers)
def apply_optimizations(option=None):
global current_optimizer
undo_optimizations()
if len(optimizers) == 0:
# a script can access the model very early, and optimizations would not be filled by then
current_optimizer = None
return ''
ldm.modules.diffusionmodules.model.nonlinearity = silu
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
sgm.modules.diffusionmodules.model.nonlinearity = silu
sgm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
if current_optimizer is not None:
current_optimizer.undo()
current_optimizer = None
selection = option or shared.opts.cross_attention_optimization
if selection == "Automatic" and len(optimizers) > 0:
matching_optimizer = next(iter([x for x in optimizers if x.cmd_opt and getattr(shared.cmd_opts, x.cmd_opt, False)]), optimizers[0])
else:
matching_optimizer = next(iter([x for x in optimizers if x.title() == selection]), None)
if selection == "None":
matching_optimizer = None
elif selection == "Automatic" and shared.cmd_opts.disable_opt_split_attention:
matching_optimizer = None
elif matching_optimizer is None:
matching_optimizer = optimizers[0]
if matching_optimizer is not None:
print(f"Applying attention optimization: {matching_optimizer.name}... ", end='')
matching_optimizer.apply()
print("done.")
current_optimizer = matching_optimizer
return current_optimizer.name
else:
print("Disabling attention optimization")
return ''
def undo_optimizations():
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
sgm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
def fix_checkpoint():
"""checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
checkpoints to be added when not training (there's a warning)"""
pass
def weighted_loss(sd_model, pred, target, mean=True):
#Calculate the weight normally, but ignore the mean
loss = sd_model._old_get_loss(pred, target, mean=False)
#Check if we have weights available
weight = getattr(sd_model, '_custom_loss_weight', None)
if weight is not None:
loss *= weight
#Return the loss, as mean if specified
return loss.mean() if mean else loss
def weighted_forward(sd_model, x, c, w, *args, **kwargs):
try:
#Temporarily append weights to a place accessible during loss calc
sd_model._custom_loss_weight = w
#Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
#Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
if not hasattr(sd_model, '_old_get_loss'):
sd_model._old_get_loss = sd_model.get_loss
sd_model.get_loss = MethodType(weighted_loss, sd_model)
#Run the standard forward function, but with the patched 'get_loss'
return sd_model.forward(x, c, *args, **kwargs)
finally:
try:
#Delete temporary weights if appended
del sd_model._custom_loss_weight
except AttributeError:
pass
#If we have an old loss function, reset the loss function to the original one
if hasattr(sd_model, '_old_get_loss'):
sd_model.get_loss = sd_model._old_get_loss
del sd_model._old_get_loss
def apply_weighted_forward(sd_model):
#Add new function 'weighted_forward' that can be called to calc weighted loss
sd_model.weighted_forward = MethodType(weighted_forward, sd_model)
def undo_weighted_forward(sd_model):
try:
del sd_model.weighted_forward
except AttributeError:
pass
class StableDiffusionModelHijack:
fixes = None
layers = None
circular_enabled = False
clip = None
optimization_method = None
def __init__(self):
import modules.textual_inversion.textual_inversion
self.extra_generation_params = {}
self.comments = []
self.embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
def apply_optimizations(self, option=None):
try:
self.optimization_method = apply_optimizations(option)
except Exception as e:
errors.display(e, "applying cross attention optimization")
undo_optimizations()
def convert_sdxl_to_ssd(self, m):
"""Converts an SDXL model to a Segmind Stable Diffusion model (see https://huggingface.co/segmind/SSD-1B)"""
delattr(m.model.diffusion_model.middle_block, '1')
delattr(m.model.diffusion_model.middle_block, '2')
for i in ['9', '8', '7', '6', '5', '4']:
delattr(m.model.diffusion_model.input_blocks[7][1].transformer_blocks, i)
delattr(m.model.diffusion_model.input_blocks[8][1].transformer_blocks, i)
delattr(m.model.diffusion_model.output_blocks[0][1].transformer_blocks, i)
delattr(m.model.diffusion_model.output_blocks[1][1].transformer_blocks, i)
delattr(m.model.diffusion_model.output_blocks[4][1].transformer_blocks, '1')
delattr(m.model.diffusion_model.output_blocks[5][1].transformer_blocks, '1')
devices.torch_gc()
def hijack(self, m):
conditioner = getattr(m, 'conditioner', None)
if conditioner:
text_cond_models = []
for i in range(len(conditioner.embedders)):
embedder = conditioner.embedders[i]
typename = type(embedder).__name__
if typename == 'FrozenOpenCLIPEmbedder':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if typename == 'FrozenCLIPEmbedder':
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
conditioner.embedders[i] = sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if typename == 'FrozenOpenCLIPEmbedder2':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self, textual_inversion_key='clip_g')
conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedder2WithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if len(text_cond_models) == 1:
m.cond_stage_model = text_cond_models[0]
else:
m.cond_stage_model = conditioner
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation or type(m.cond_stage_model) == xlmr_m18.BertSeriesModelWithTransformation:
model_embeddings = m.cond_stage_model.roberta.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
apply_weighted_forward(m)
if m.cond_stage_key == "edit":
sd_hijack_unet.hijack_ddpm_edit()
self.apply_optimizations()
self.clip = m.cond_stage_model
def flatten(el):
flattened = [flatten(children) for children in el.children()]
res = [el]
for c in flattened:
res += c
return res
self.layers = flatten(m)
import modules.models.diffusion.ddpm_edit
ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sd_unet.UNetModel_forward)
sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sd_unet.UNetModel_forward)
if isinstance(m, ldm.models.diffusion.ddpm.LatentDiffusion):
sd_unet.original_forward = ldm_original_forward
elif isinstance(m, modules.models.diffusion.ddpm_edit.LatentDiffusion):
sd_unet.original_forward = ldm_original_forward
elif isinstance(m, sgm.models.diffusion.DiffusionEngine):
sd_unet.original_forward = sgm_original_forward
else:
sd_unet.original_forward = None
def undo_hijack(self, m):
conditioner = getattr(m, 'conditioner', None)
if conditioner:
for i in range(len(conditioner.embedders)):
embedder = conditioner.embedders[i]
if isinstance(embedder, (sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords, sd_hijack_open_clip.FrozenOpenCLIPEmbedder2WithCustomWords)):
embedder.wrapped.model.token_embedding = embedder.wrapped.model.token_embedding.wrapped
conditioner.embedders[i] = embedder.wrapped
if isinstance(embedder, sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords):
embedder.wrapped.transformer.text_model.embeddings.token_embedding = embedder.wrapped.transformer.text_model.embeddings.token_embedding.wrapped
conditioner.embedders[i] = embedder.wrapped
if hasattr(m, 'cond_stage_model'):
delattr(m, 'cond_stage_model')
elif type(m.cond_stage_model) == sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords:
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
m.cond_stage_model = m.cond_stage_model.wrapped
undo_optimizations()
undo_weighted_forward(m)
self.apply_circular(False)
self.layers = None
self.clip = None
patches.undo(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward")
patches.undo(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward")
sd_unet.original_forward = None
def apply_circular(self, enable):
if self.circular_enabled == enable:
return
self.circular_enabled = enable
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]:
layer.padding_mode = 'circular' if enable else 'zeros'
|