| 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
 | """RNG imitiating torch cuda randn on CPU. You are welcome.
Usage:
```
g = Generator(seed=0)
print(g.randn(shape=(3, 4)))
```
Expected output:
```
[[-0.92466259 -0.42534415 -2.6438457   0.14518388]
 [-0.12086647 -0.57972564 -0.62285122 -0.32838709]
 [-1.07454231 -0.36314407 -1.67105067  2.26550497]]
```
"""
import numpy as np
philox_m = [0xD2511F53, 0xCD9E8D57]
philox_w = [0x9E3779B9, 0xBB67AE85]
two_pow32_inv = np.array([2.3283064e-10], dtype=np.float32)
two_pow32_inv_2pi = np.array([2.3283064e-10 * 6.2831855], dtype=np.float32)
def uint32(x):
    """Converts (N,) np.uint64 array into (2, N) np.unit32 array."""
    return x.view(np.uint32).reshape(-1, 2).transpose(1, 0)
def philox4_round(counter, key):
    """A single round of the Philox 4x32 random number generator."""
    v1 = uint32(counter[0].astype(np.uint64) * philox_m[0])
    v2 = uint32(counter[2].astype(np.uint64) * philox_m[1])
    counter[0] = v2[1] ^ counter[1] ^ key[0]
    counter[1] = v2[0]
    counter[2] = v1[1] ^ counter[3] ^ key[1]
    counter[3] = v1[0]
def philox4_32(counter, key, rounds=10):
    """Generates 32-bit random numbers using the Philox 4x32 random number generator.
    Parameters:
        counter (numpy.ndarray): A 4xN array of 32-bit integers representing the counter values (offset into generation).
        key (numpy.ndarray): A 2xN array of 32-bit integers representing the key values (seed).
        rounds (int): The number of rounds to perform.
    Returns:
        numpy.ndarray: A 4xN array of 32-bit integers containing the generated random numbers.
    """
    for _ in range(rounds - 1):
        philox4_round(counter, key)
        key[0] = key[0] + philox_w[0]
        key[1] = key[1] + philox_w[1]
    philox4_round(counter, key)
    return counter
def box_muller(x, y):
    """Returns just the first out of two numbers generated by Box–Muller transform algorithm."""
    u = x * two_pow32_inv + two_pow32_inv / 2
    v = y * two_pow32_inv_2pi + two_pow32_inv_2pi / 2
    s = np.sqrt(-2.0 * np.log(u))
    r1 = s * np.sin(v)
    return r1.astype(np.float32)
class Generator:
    """RNG that produces same outputs as torch.randn(..., device='cuda') on CPU"""
    def __init__(self, seed):
        self.seed = seed
        self.offset = 0
    def randn(self, shape):
        """Generate a sequence of n standard normal random variables using the Philox 4x32 random number generator and the Box-Muller transform."""
        n = 1
        for x in shape:
            n *= x
        counter = np.zeros((4, n), dtype=np.uint32)
        counter[0] = self.offset
        counter[2] = np.arange(n, dtype=np.uint32)  # up to 2^32 numbers can be generated - if you want more you'd need to spill into counter[3]
        self.offset += 1
        key = np.empty(n, dtype=np.uint64)
        key.fill(self.seed)
        key = uint32(key)
        g = philox4_32(counter, key)
        return box_muller(g[0], g[1]).reshape(shape)  # discard g[2] and g[3]
 |