diff options
author | v0xie <28695009+v0xie@users.noreply.github.com> | 2023-10-21 21:42:24 +0000 |
---|---|---|
committer | v0xie <28695009+v0xie@users.noreply.github.com> | 2023-10-21 21:42:24 +0000 |
commit | 768354772853a1d27a9bf7e41bd6a6e4eac7a9c7 (patch) | |
tree | 3eb3d971e5b619944d53a9b620bb7601928f1547 | |
parent | 2d8c894b274d60a3e3563a2ace23c4ebcea9e652 (diff) | |
download | stable-diffusion-webui-gfx803-768354772853a1d27a9bf7e41bd6a6e4eac7a9c7.tar.gz stable-diffusion-webui-gfx803-768354772853a1d27a9bf7e41bd6a6e4eac7a9c7.tar.bz2 stable-diffusion-webui-gfx803-768354772853a1d27a9bf7e41bd6a6e4eac7a9c7.zip |
fix: return orig weights during updown, merge weights before forward
-rw-r--r-- | extensions-builtin/Lora/network_oft.py | 90 |
1 files changed, 69 insertions, 21 deletions
diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index 8e561ab0..f5f32c23 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -1,5 +1,6 @@ import torch import network +from modules import devices class ModuleTypeOFT(network.ModuleType): @@ -29,23 +30,56 @@ class NetworkModuleOFT(network.NetworkModule): self.block_size = self.out_dim // self.num_blocks self.org_module: list[torch.Module] = [self.sd_module] + self.org_weight = self.org_module[0].weight.to(self.org_module[0].weight.device, copy=True) + #self.org_weight = self.org_module[0].weight.to(devices.cpu, copy=True) self.R = self.get_weight(self.oft_blocks) + + self.merged_weight = self.merge_weight() self.apply_to() + self.merged = False + + + def merge_weight(self): + org_sd = self.org_module[0].state_dict() + R = self.R.to(self.org_weight.device, dtype=self.org_weight.dtype) + if self.org_weight.dim() == 4: + weight = torch.einsum("oihw, op -> pihw", self.org_weight, R) + else: + weight = torch.einsum("oi, op -> pi", self.org_weight, R) + org_sd['weight'] = weight + # replace weight + #self.org_module[0].load_state_dict(org_sd) + return weight + pass + + def replace_weight(self, new_weight): + org_sd = self.org_module[0].state_dict() + org_sd['weight'] = new_weight + self.org_module[0].load_state_dict(org_sd) + self.merged = True + + def restore_weight(self): + org_sd = self.org_module[0].state_dict() + org_sd['weight'] = self.org_weight + self.org_module[0].load_state_dict(org_sd) + self.merged = False + # replace forward method of original linear rather than replacing the module # how do we revert this to unload the weights? def apply_to(self): self.org_forward = self.org_module[0].forward #self.org_module[0].forward = self.forward + self.org_module[0].register_forward_pre_hook(self.pre_forward_hook) self.org_module[0].register_forward_hook(self.forward_hook) def get_weight(self, oft_blocks, multiplier=None): - self.constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype) + constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype) block_Q = oft_blocks - oft_blocks.transpose(1, 2) norm_Q = torch.norm(block_Q.flatten()) - new_norm_Q = torch.clamp(norm_Q, max=self.constraint) + new_norm_Q = torch.clamp(norm_Q, max=constraint) block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) - m_I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) + m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse()) #block_R_weighted = multiplier * block_R + (1 - multiplier) * I #R = torch.block_diag(*block_R_weighted) @@ -54,33 +88,47 @@ class NetworkModuleOFT(network.NetworkModule): return R def calc_updown(self, orig_weight): - oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) + #oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) - R = self.get_weight(oft_blocks) - self.R = R + #R = self.R.to(orig_weight.device, dtype=orig_weight.dtype) + ##self.R = R - # if orig_weight.dim() == 4: - # weight = torch.einsum("oihw, op -> pihw", orig_weight, R) - # else: - # weight = torch.einsum("oi, op -> pi", orig_weight, R) + #if orig_weight.dim() == 4: + # weight = torch.einsum("oihw, op -> pihw", orig_weight, R) + #else: + # weight = torch.einsum("oi, op -> pi", orig_weight, R) - updown = orig_weight @ R - output_shape = self.oft_blocks.shape + #updown = orig_weight @ R + #updown = weight + updown = torch.zeros_like(orig_weight, device=orig_weight.device, dtype=orig_weight.dtype) + #updown = orig_weight + output_shape = orig_weight.shape + #orig_weight = self.merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) + #output_shape = self.oft_blocks.shape return self.finalize_updown(updown, orig_weight, output_shape) + def pre_forward_hook(self, module, input): + if not self.merged: + self.replace_weight(self.merged_weight) + + def forward_hook(self, module, args, output): + if self.merged: + pass + #self.restore_weight() #print(f'Forward hook in {self.network_key} called') - x = output - R = self.R.to(x.device, dtype=x.dtype) - if x.dim() == 4: - x = x.permute(0, 2, 3, 1) - x = torch.matmul(x, R) - x = x.permute(0, 3, 1, 2) - else: - x = torch.matmul(x, R) - return x + #x = output + #R = self.R.to(x.device, dtype=x.dtype) + + #if x.dim() == 4: + # x = x.permute(0, 2, 3, 1) + # x = torch.matmul(x, R) + # x = x.permute(0, 3, 1, 2) + #else: + # x = torch.matmul(x, R) + #return x # def forward(self, x, y=None): # x = self.org_forward(x) |