aboutsummaryrefslogtreecommitdiffstats
path: root/modules/extras.py
diff options
context:
space:
mode:
authorAUTOMATIC <16777216c@gmail.com>2022-09-27 07:44:00 +0000
committerAUTOMATIC <16777216c@gmail.com>2022-09-27 07:44:00 +0000
commitada901ed661a717c44281d640b8fc0a275d4cb48 (patch)
treeece33cff7a600ba5f51fec4039fa12f3baaa08c7 /modules/extras.py
parenta9dc307a210780546b970c68773f1ba39ac594c2 (diff)
downloadstable-diffusion-webui-gfx803-ada901ed661a717c44281d640b8fc0a275d4cb48.tar.gz
stable-diffusion-webui-gfx803-ada901ed661a717c44281d640b8fc0a275d4cb48.tar.bz2
stable-diffusion-webui-gfx803-ada901ed661a717c44281d640b8fc0a275d4cb48.zip
added console outputs, more clear indication of progress, and ability to specify full filename to checkpoint merger
restore "Loading..." text
Diffstat (limited to 'modules/extras.py')
-rw-r--r--modules/extras.py48
1 files changed, 33 insertions, 15 deletions
diff --git a/modules/extras.py b/modules/extras.py
index a9788e7d..15873204 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -4,6 +4,7 @@ import numpy as np
from PIL import Image
import torch
+import tqdm
from modules import processing, shared, images, devices
from modules.shared import opts
@@ -149,28 +150,45 @@ def run_modelmerger(modelname_0, modelname_1, interp_method, interp_amount):
alpha = alpha * alpha * (3 - (2 * alpha))
return theta0 + ((theta1 - theta0) * alpha)
- model_0 = torch.load('models/' + modelname_0 + '.ckpt')
- model_1 = torch.load('models/' + modelname_1 + '.ckpt')
+ if os.path.exists(modelname_0):
+ model0_filename = modelname_0
+ modelname_0 = os.path.splitext(os.path.basename(modelname_0))[0]
+ else:
+ model0_filename = 'models/' + modelname_0 + '.ckpt'
+
+ if os.path.exists(modelname_1):
+ model1_filename = modelname_1
+ modelname_1 = os.path.splitext(os.path.basename(modelname_1))[0]
+ else:
+ model1_filename = 'models/' + modelname_1 + '.ckpt'
+
+ print(f"Loading {model0_filename}...")
+ model_0 = torch.load(model0_filename, map_location='cpu')
+
+ print(f"Loading {model1_filename}...")
+ model_1 = torch.load(model1_filename, map_location='cpu')
theta_0 = model_0['state_dict']
theta_1 = model_1['state_dict']
- theta_func = weighted_sum
-
- if interp_method == "Weighted Sum":
- theta_func = weighted_sum
- if interp_method == "Sigmoid":
- theta_func = sigmoid
-
- for key in theta_0.keys():
+
+ theta_funcs = {
+ "Weighted Sum": weighted_sum,
+ "Sigmoid": sigmoid,
+ }
+ theta_func = theta_funcs[interp_method]
+
+ print(f"Merging...")
+ for key in tqdm.tqdm(theta_0.keys()):
if 'model' in key and key in theta_1:
theta_0[key] = theta_func(theta_0[key], theta_1[key], interp_amount)
for key in theta_1.keys():
if 'model' in key and key not in theta_0:
theta_0[key] = theta_1[key]
-
- output_modelname = 'models/' + modelname_0 + '-' + modelname_1 + '-merged.ckpt';
-
+
+ output_modelname = 'models/' + modelname_0 + '-' + modelname_1 + '-merged.ckpt'
+ print(f"Saving to {output_modelname}...")
torch.save(model_0, output_modelname)
-
- return "<p>Model saved to " + output_modelname + "</p>"
+
+ print(f"Checkpoint saved.")
+ return "Checkpoint saved to " + output_modelname