aboutsummaryrefslogtreecommitdiffstats
path: root/modules
diff options
context:
space:
mode:
authorAUTOMATIC <16777216c@gmail.com>2022-10-06 11:12:52 +0000
committerAUTOMATIC <16777216c@gmail.com>2022-10-06 11:12:52 +0000
commit5993df24a1026225cb8af89237547c1d9101ce69 (patch)
treec52ac85fcdac4e332dc6fd7a5a6960b6b4a3b36d /modules
parenta971e4a767118ec41ec0f129770122babfb16a16 (diff)
downloadstable-diffusion-webui-gfx803-5993df24a1026225cb8af89237547c1d9101ce69.tar.gz
stable-diffusion-webui-gfx803-5993df24a1026225cb8af89237547c1d9101ce69.tar.bz2
stable-diffusion-webui-gfx803-5993df24a1026225cb8af89237547c1d9101ce69.zip
integrate the new samplers PR
Diffstat (limited to 'modules')
-rw-r--r--modules/processing.py7
-rw-r--r--modules/sd_samplers.py59
-rw-r--r--modules/shared.py1
3 files changed, 35 insertions, 32 deletions
diff --git a/modules/processing.py b/modules/processing.py
index e01c8b3f..e567956c 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -477,7 +477,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.firstphase_height_truncated = int(scale * self.height)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
- self.sampler = sd_samplers.samplers[self.sampler_index].constructor(self.sd_model)
+ self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@@ -520,7 +520,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob()
- self.sampler = sd_samplers.samplers[self.sampler_index].constructor(self.sd_model)
+ self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
+
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
# GC now before running the next img2img to prevent running out of memory
@@ -555,7 +556,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.nmask = None
def init(self, all_prompts, all_seeds, all_subseeds):
- self.sampler = sd_samplers.samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
+ self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
crop_region = None
if self.image_mask is not None:
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index 8d6eb762..497df943 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -13,46 +13,46 @@ from modules.shared import opts, cmd_opts, state
import modules.shared as shared
-SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases'])
+SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
samplers_k_diffusion = [
- ('Euler a', 'sample_euler_ancestral', ['k_euler_a']),
- ('Euler', 'sample_euler', ['k_euler']),
- ('LMS', 'sample_lms', ['k_lms']),
- ('Heun', 'sample_heun', ['k_heun']),
- ('DPM2', 'sample_dpm_2', ['k_dpm_2']),
- ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']),
- ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']),
- ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']),
+ ('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
+ ('Euler', 'sample_euler', ['k_euler'], {}),
+ ('LMS', 'sample_lms', ['k_lms'], {}),
+ ('Heun', 'sample_heun', ['k_heun'], {}),
+ ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
+ ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
+ ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
+ ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
+ ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
+ ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
+ ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
]
-if opts.show_karras_scheduler_variants:
- k_diffusion.sampling.sample_dpm_2_ka = k_diffusion.sampling.sample_dpm_2
- k_diffusion.sampling.sample_dpm_2_ancestral_ka = k_diffusion.sampling.sample_dpm_2_ancestral
- k_diffusion.sampling.sample_lms_ka = k_diffusion.sampling.sample_lms
- samplers_k_diffusion_ka = [
- ('LMS K Scheduling', 'sample_lms_ka', ['k_lms_ka']),
- ('DPM2 K Scheduling', 'sample_dpm_2_ka', ['k_dpm_2_ka']),
- ('DPM2 a K Scheduling', 'sample_dpm_2_ancestral_ka', ['k_dpm_2_a_ka']),
- ]
- samplers_k_diffusion.extend(samplers_k_diffusion_ka)
-
samplers_data_k_diffusion = [
- SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases)
- for label, funcname, aliases in samplers_k_diffusion
+ SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
+ for label, funcname, aliases, options in samplers_k_diffusion
if hasattr(k_diffusion.sampling, funcname)
]
all_samplers = [
*samplers_data_k_diffusion,
- SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []),
- SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []),
+ SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
+ SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]
samplers = []
samplers_for_img2img = []
+def create_sampler_with_index(list_of_configs, index, model):
+ config = list_of_configs[index]
+ sampler = config.constructor(model)
+ sampler.config = config
+
+ return sampler
+
+
def set_samplers():
global samplers, samplers_for_img2img
@@ -130,6 +130,7 @@ class VanillaStableDiffusionSampler:
self.step = 0
self.eta = None
self.default_eta = 0.0
+ self.config = None
def number_of_needed_noises(self, p):
return 0
@@ -291,6 +292,7 @@ class KDiffusionSampler:
self.stop_at = None
self.eta = None
self.default_eta = 1.0
+ self.config = None
def callback_state(self, d):
store_latent(d["denoised"])
@@ -355,11 +357,12 @@ class KDiffusionSampler:
steps = steps or p.steps
if p.sampler_noise_scheduler_override:
- sigmas = p.sampler_noise_scheduler_override(steps)
- elif self.funcname.endswith('ka'):
- sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
+ sigmas = p.sampler_noise_scheduler_override(steps)
+ elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
+ sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
else:
- sigmas = self.model_wrap.get_sigmas(steps)
+ sigmas = self.model_wrap.get_sigmas(steps)
+
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
diff --git a/modules/shared.py b/modules/shared.py
index 9e4860a2..ca2e4c74 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -236,7 +236,6 @@ options_templates.update(options_section(('ui', "User interface"), {
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
- "show_karras_scheduler_variants": OptionInfo(True, "Show Karras scheduling variants for select samplers. Try these variants if your K sampled images suffer from excessive noise."),
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {