diff options
-rw-r--r-- | modules/textual_inversion/autocrop.py | 216 | ||||
-rw-r--r-- | modules/textual_inversion/preprocess.py | 150 |
2 files changed, 230 insertions, 136 deletions
diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py new file mode 100644 index 00000000..f858a958 --- /dev/null +++ b/modules/textual_inversion/autocrop.py @@ -0,0 +1,216 @@ +import cv2 +from collections import defaultdict +from math import log, sqrt +import numpy as np +from PIL import Image, ImageDraw + +GREEN = "#0F0" +BLUE = "#00F" +RED = "#F00" + +def crop_image(im, settings): + """ Intelligently crop an image to the subject matter """ + if im.height > im.width: + im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width)) + else: + im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height)) + + focus = focal_point(im, settings) + + # take the focal point and turn it into crop coordinates that try to center over the focal + # point but then get adjusted back into the frame + y_half = int(settings.crop_height / 2) + x_half = int(settings.crop_width / 2) + + x1 = focus.x - x_half + if x1 < 0: + x1 = 0 + elif x1 + settings.crop_width > im.width: + x1 = im.width - settings.crop_width + + y1 = focus.y - y_half + if y1 < 0: + y1 = 0 + elif y1 + settings.crop_height > im.height: + y1 = im.height - settings.crop_height + + x2 = x1 + settings.crop_width + y2 = y1 + settings.crop_height + + crop = [x1, y1, x2, y2] + + if settings.annotate_image: + d = ImageDraw.Draw(im) + rect = list(crop) + rect[2] -= 1 + rect[3] -= 1 + d.rectangle(rect, outline=GREEN) + if settings.destop_view_image: + im.show() + + return im.crop(tuple(crop)) + +def focal_point(im, settings): + corner_points = image_corner_points(im, settings) + entropy_points = image_entropy_points(im, settings) + face_points = image_face_points(im, settings) + + total_points = len(corner_points) + len(entropy_points) + len(face_points) + + corner_weight = settings.corner_points_weight + entropy_weight = settings.entropy_points_weight + face_weight = settings.face_points_weight + + weight_pref_total = corner_weight + entropy_weight + face_weight + + # weight things + pois = [] + if weight_pref_total == 0 or total_points == 0: + return pois + + pois.extend( + [ PointOfInterest( p.x, p.y, weight=p.weight * ( (corner_weight/weight_pref_total) / (len(corner_points)/total_points) )) for p in corner_points ] + ) + pois.extend( + [ PointOfInterest( p.x, p.y, weight=p.weight * ( (entropy_weight/weight_pref_total) / (len(entropy_points)/total_points) )) for p in entropy_points ] + ) + pois.extend( + [ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ] + ) + + if settings.annotate_image: + d = ImageDraw.Draw(im) + + average_point = poi_average(pois, settings, im=im) + + if settings.annotate_image: + d.ellipse([average_point.x - 25, average_point.y - 25, average_point.x + 25, average_point.y + 25], outline=GREEN) + + return average_point + + +def image_face_points(im, settings): + np_im = np.array(im) + gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) + classifier = cv2.CascadeClassifier(f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml') + + minsize = int(min(im.width, im.height) * 0.15) # at least N percent of the smallest side + faces = classifier.detectMultiScale(gray, scaleFactor=1.05, + minNeighbors=5, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) + + if len(faces) == 0: + return [] + + rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] + if settings.annotate_image: + for f in rects: + d = ImageDraw.Draw(im) + d.rectangle(f, outline=RED) + + return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2) for r in rects] + + +def image_corner_points(im, settings): + grayscale = im.convert("L") + + # naive attempt at preventing focal points from collecting at watermarks near the bottom + gd = ImageDraw.Draw(grayscale) + gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") + + np_im = np.array(grayscale) + + points = cv2.goodFeaturesToTrack( + np_im, + maxCorners=100, + qualityLevel=0.04, + minDistance=min(grayscale.width, grayscale.height)*0.07, + useHarrisDetector=False, + ) + + if points is None: + return [] + + focal_points = [] + for point in points: + x, y = point.ravel() + focal_points.append(PointOfInterest(x, y)) + + return focal_points + + +def image_entropy_points(im, settings): + landscape = im.height < im.width + portrait = im.height > im.width + if landscape: + move_idx = [0, 2] + move_max = im.size[0] + elif portrait: + move_idx = [1, 3] + move_max = im.size[1] + else: + return [] + + e_max = 0 + crop_current = [0, 0, settings.crop_width, settings.crop_height] + crop_best = crop_current + while crop_current[move_idx[1]] < move_max: + crop = im.crop(tuple(crop_current)) + e = image_entropy(crop) + + if (e > e_max): + e_max = e + crop_best = list(crop_current) + + crop_current[move_idx[0]] += 4 + crop_current[move_idx[1]] += 4 + + x_mid = int(crop_best[0] + settings.crop_width/2) + y_mid = int(crop_best[1] + settings.crop_height/2) + + return [PointOfInterest(x_mid, y_mid)] + + +def image_entropy(im): + # greyscale image entropy + band = np.asarray(im.convert("1")) + hist, _ = np.histogram(band, bins=range(0, 256)) + hist = hist[hist > 0] + return -np.log2(hist / hist.sum()).sum() + + +def poi_average(pois, settings, im=None): + weight = 0.0 + x = 0.0 + y = 0.0 + for pois in pois: + if settings.annotate_image and im is not None: + w = 4 * 0.5 * sqrt(pois.weight) + d = ImageDraw.Draw(im) + d.ellipse([ + pois.x - w, pois.y - w, + pois.x + w, pois.y + w ], fill=BLUE) + weight += pois.weight + x += pois.x * pois.weight + y += pois.y * pois.weight + avg_x = round(x / weight) + avg_y = round(y / weight) + + return PointOfInterest(avg_x, avg_y) + + +class PointOfInterest: + def __init__(self, x, y, weight=1.0): + self.x = x + self.y = y + self.weight = weight + + +class Settings: + def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False): + self.crop_width = crop_width + self.crop_height = crop_height + self.corner_points_weight = corner_points_weight + self.entropy_points_weight = entropy_points_weight + self.face_points_weight = entropy_points_weight + self.annotate_image = annotate_image + self.destop_view_image = False
\ No newline at end of file diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 7c1a594e..0c79f012 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -1,7 +1,5 @@ import os
-import cv2
-import numpy as np
-from PIL import Image, ImageOps, ImageDraw
+from PIL import Image, ImageOps
import platform
import sys
import tqdm
@@ -9,6 +7,7 @@ import time from modules import shared, images
from modules.shared import opts, cmd_opts
+from modules.textual_inversion import autocrop
if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
@@ -80,6 +79,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro if process_flip:
save_pic_with_caption(ImageOps.mirror(image), index)
+
for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0]
filename = os.path.join(src, imagefile)
@@ -118,37 +118,16 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro processing_option_ran = True
- if process_entropy_focus and (is_tall or is_wide):
- if is_tall:
- img = img.resize((width, height * img.height // img.width))
- else:
- img = img.resize((width * img.width // img.height, height))
-
- x_focal_center, y_focal_center = image_central_focal_point(img, width, height)
-
- # take the focal point and turn it into crop coordinates that try to center over the focal
- # point but then get adjusted back into the frame
- y_half = int(height / 2)
- x_half = int(width / 2)
-
- x1 = x_focal_center - x_half
- if x1 < 0:
- x1 = 0
- elif x1 + width > img.width:
- x1 = img.width - width
-
- y1 = y_focal_center - y_half
- if y1 < 0:
- y1 = 0
- elif y1 + height > img.height:
- y1 = img.height - height
-
- x2 = x1 + width
- y2 = y1 + height
-
- crop = [x1, y1, x2, y2]
-
- focal = img.crop(tuple(crop))
+ if process_entropy_focus and img.height != img.width:
+ autocrop_settings = autocrop.Settings(
+ crop_width = width,
+ crop_height = height,
+ face_points_weight = 0.9,
+ entropy_points_weight = 0.7,
+ corner_points_weight = 0.5,
+ annotate_image = False
+ )
+ focal = autocrop.crop_image(img, autocrop_settings)
save_pic(focal, index)
processing_option_ran = True
@@ -157,105 +136,4 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro img = images.resize_image(1, img, width, height)
save_pic(img, index)
- shared.state.nextjob()
-
-
-def image_central_focal_point(im, target_width, target_height):
- focal_points = []
-
- focal_points.extend(
- image_focal_points(im)
- )
-
- fp_entropy = image_entropy_point(im, target_width, target_height)
- fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy
-
- focal_points.append(fp_entropy)
-
- weight = 0.0
- x = 0.0
- y = 0.0
- for focal_point in focal_points:
- weight += focal_point['weight']
- x += focal_point['x'] * focal_point['weight']
- y += focal_point['y'] * focal_point['weight']
- avg_x = round(x // weight)
- avg_y = round(y // weight)
-
- return avg_x, avg_y
-
-
-def image_focal_points(im):
- grayscale = im.convert("L")
-
- # naive attempt at preventing focal points from collecting at watermarks near the bottom
- gd = ImageDraw.Draw(grayscale)
- gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
-
- np_im = np.array(grayscale)
-
- points = cv2.goodFeaturesToTrack(
- np_im,
- maxCorners=100,
- qualityLevel=0.04,
- minDistance=min(grayscale.width, grayscale.height)*0.07,
- useHarrisDetector=False,
- )
-
- if points is None:
- return []
-
- focal_points = []
- for point in points:
- x, y = point.ravel()
- focal_points.append({
- 'x': x,
- 'y': y,
- 'weight': 1.0
- })
-
- return focal_points
-
-
-def image_entropy_point(im, crop_width, crop_height):
- landscape = im.height < im.width
- portrait = im.height > im.width
- if landscape:
- move_idx = [0, 2]
- move_max = im.size[0]
- elif portrait:
- move_idx = [1, 3]
- move_max = im.size[1]
-
- e_max = 0
- crop_current = [0, 0, crop_width, crop_height]
- crop_best = crop_current
- while crop_current[move_idx[1]] < move_max:
- crop = im.crop(tuple(crop_current))
- e = image_entropy(crop)
-
- if (e > e_max):
- e_max = e
- crop_best = list(crop_current)
-
- crop_current[move_idx[0]] += 4
- crop_current[move_idx[1]] += 4
-
- x_mid = int(crop_best[0] + crop_width/2)
- y_mid = int(crop_best[1] + crop_height/2)
-
-
- return {
- 'x': x_mid,
- 'y': y_mid,
- 'weight': 1.0
- }
-
-
-def image_entropy(im):
- # greyscale image entropy
- band = np.asarray(im.convert("1"))
- hist, _ = np.histogram(band, bins=range(0, 256))
- hist = hist[hist > 0]
- return -np.log2(hist / hist.sum()).sum()
-
+ shared.state.nextjob()
\ No newline at end of file |