aboutsummaryrefslogtreecommitdiffstats
path: root/modules/textual_inversion/preprocess.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/textual_inversion/preprocess.py')
-rw-r--r--modules/textual_inversion/preprocess.py150
1 files changed, 14 insertions, 136 deletions
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 7c1a594e..0c79f012 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -1,7 +1,5 @@
import os
-import cv2
-import numpy as np
-from PIL import Image, ImageOps, ImageDraw
+from PIL import Image, ImageOps
import platform
import sys
import tqdm
@@ -9,6 +7,7 @@ import time
from modules import shared, images
from modules.shared import opts, cmd_opts
+from modules.textual_inversion import autocrop
if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
@@ -80,6 +79,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
if process_flip:
save_pic_with_caption(ImageOps.mirror(image), index)
+
for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0]
filename = os.path.join(src, imagefile)
@@ -118,37 +118,16 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
processing_option_ran = True
- if process_entropy_focus and (is_tall or is_wide):
- if is_tall:
- img = img.resize((width, height * img.height // img.width))
- else:
- img = img.resize((width * img.width // img.height, height))
-
- x_focal_center, y_focal_center = image_central_focal_point(img, width, height)
-
- # take the focal point and turn it into crop coordinates that try to center over the focal
- # point but then get adjusted back into the frame
- y_half = int(height / 2)
- x_half = int(width / 2)
-
- x1 = x_focal_center - x_half
- if x1 < 0:
- x1 = 0
- elif x1 + width > img.width:
- x1 = img.width - width
-
- y1 = y_focal_center - y_half
- if y1 < 0:
- y1 = 0
- elif y1 + height > img.height:
- y1 = img.height - height
-
- x2 = x1 + width
- y2 = y1 + height
-
- crop = [x1, y1, x2, y2]
-
- focal = img.crop(tuple(crop))
+ if process_entropy_focus and img.height != img.width:
+ autocrop_settings = autocrop.Settings(
+ crop_width = width,
+ crop_height = height,
+ face_points_weight = 0.9,
+ entropy_points_weight = 0.7,
+ corner_points_weight = 0.5,
+ annotate_image = False
+ )
+ focal = autocrop.crop_image(img, autocrop_settings)
save_pic(focal, index)
processing_option_ran = True
@@ -157,105 +136,4 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
img = images.resize_image(1, img, width, height)
save_pic(img, index)
- shared.state.nextjob()
-
-
-def image_central_focal_point(im, target_width, target_height):
- focal_points = []
-
- focal_points.extend(
- image_focal_points(im)
- )
-
- fp_entropy = image_entropy_point(im, target_width, target_height)
- fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy
-
- focal_points.append(fp_entropy)
-
- weight = 0.0
- x = 0.0
- y = 0.0
- for focal_point in focal_points:
- weight += focal_point['weight']
- x += focal_point['x'] * focal_point['weight']
- y += focal_point['y'] * focal_point['weight']
- avg_x = round(x // weight)
- avg_y = round(y // weight)
-
- return avg_x, avg_y
-
-
-def image_focal_points(im):
- grayscale = im.convert("L")
-
- # naive attempt at preventing focal points from collecting at watermarks near the bottom
- gd = ImageDraw.Draw(grayscale)
- gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
-
- np_im = np.array(grayscale)
-
- points = cv2.goodFeaturesToTrack(
- np_im,
- maxCorners=100,
- qualityLevel=0.04,
- minDistance=min(grayscale.width, grayscale.height)*0.07,
- useHarrisDetector=False,
- )
-
- if points is None:
- return []
-
- focal_points = []
- for point in points:
- x, y = point.ravel()
- focal_points.append({
- 'x': x,
- 'y': y,
- 'weight': 1.0
- })
-
- return focal_points
-
-
-def image_entropy_point(im, crop_width, crop_height):
- landscape = im.height < im.width
- portrait = im.height > im.width
- if landscape:
- move_idx = [0, 2]
- move_max = im.size[0]
- elif portrait:
- move_idx = [1, 3]
- move_max = im.size[1]
-
- e_max = 0
- crop_current = [0, 0, crop_width, crop_height]
- crop_best = crop_current
- while crop_current[move_idx[1]] < move_max:
- crop = im.crop(tuple(crop_current))
- e = image_entropy(crop)
-
- if (e > e_max):
- e_max = e
- crop_best = list(crop_current)
-
- crop_current[move_idx[0]] += 4
- crop_current[move_idx[1]] += 4
-
- x_mid = int(crop_best[0] + crop_width/2)
- y_mid = int(crop_best[1] + crop_height/2)
-
-
- return {
- 'x': x_mid,
- 'y': y_mid,
- 'weight': 1.0
- }
-
-
-def image_entropy(im):
- # greyscale image entropy
- band = np.asarray(im.convert("1"))
- hist, _ = np.histogram(band, bins=range(0, 256))
- hist = hist[hist > 0]
- return -np.log2(hist / hist.sum()).sum()
-
+ shared.state.nextjob() \ No newline at end of file